考虑路段恢复差异的道路网络恢复决策优化
Optimization of Road Network Recovery Decisions Considering Road Section Recovery Differences
责任编辑: 王一凡
收稿日期: 2023-02-1 修回日期: 2023-03-16 接受日期: 2023-04-13
基金资助: |
|
Received: 2023-02-1 Revised: 2023-03-16 Accepted: 2023-04-13
作者简介 About authors
路庆昌(1984-),教授,博士生导师,从事交通网络性能分析与优化;E-mail:
现有路网恢复决策研究忽略了不同路段恢复速度和恢复程度差异对于路网恢复效果的影响.针对该问题,首先构建基于路段阻抗容忍度的路网连通性指标,以开展路段通行能力部分恢复情况下的路网性能评价;然后,以加权路网性能韧性和恢复速度韧性为优化目标,构建应急恢复决策双层优化模型,在确定待恢复路段的最优集合及恢复时序的同时,通过路段层面的资源分配与预算分配获得待恢复路段的恢复程度和恢复速度;最后,基于传统并行机调度问题遗传算法,构建新型编译码方法求解上层模型,基于Frank-Wolfe算法求解下层模型.基于贵州省区域高速公路网数据,对上述模型和算法进行了验证和分析.结果表明:在一定的资源和预算约束下,考虑路段恢复程度差异可提高32.62%的路网性能韧性,考虑路段恢复速度差异可提高10.17%的路网性能韧性.敏感性分析表明:考虑路段恢复速度差异可以提高增加恢复资源数量对于路网性能韧性、恢复速度韧性和加权韧性提升的边际效益,分别为12.69%、5.47%和22.93%.考虑路段恢复程度差异有助于平衡恢复预算增加导致的路网性能韧性的提高和恢复速度韧性的降低,保障路网恢复效果.因此考虑不同路段恢复差异对于路网恢复决策制定有重要意义.
关键词:
Existing studies on road network recovery decision have ignored the impact of the differences in recovery speed and recovery degree of different road sections on the recovery performance of the road network. To address this problem, road network connectivity index based on section impedance tolerance was first constructed to evaluate road network performance under partial recovery of road section capacity. Then, a bi-level optimization model for emergency recovery decisions was constructed with the weighted road network performance resilience and recovery speed resilience as optimization objectives. When the optimal set and recovery time sequence of the road sections to be repaired are determined, the recovery degree and speed of the road sections to be restored are obtained through resource allocation and budget allocation at the road section level. Finally, based on the traditional parallel machine scheduling problem genetic algorithm, a new encoding and decoding method was constructed to solve the upper model. The lower level model was solved based on the Frank-Wolfe algorithm. Based on the data of a regional expressway network in Guizhou Province, the above models and algorithms were verified and analyzed. The results show that under certain resource and budget constraints, considering the difference in road section recovery degree can improve the road network performance resilience by 32.62%. Considering the difference in road section recovery speed can improve the road network performance resilience by 10.17%. The sensitivity analysis shows that taking into consideration the difference in road section recovery speed can improve the marginal benefits of increasing the number of recovery resources for improving road network performance resilience, recovery speed resilience, and weighted resilience by 12.69%, 5.47%, and 22.93% respectively. Considering the difference in road section recovery degree helps balance the improvement of road network performance resilience and the reduction of recovery speed resilience caused by the increase of recovery budget, so as to ensure the road network recovery performance. Therefore, it is important to consider the recovery differences in different road sections for road network recovery decision.
Keywords:
本文引用格式
路庆昌, 刘鹏, 秦汉, 徐鹏程.
LU Qingchang, LIU Peng, QIN Han, XU Pengcheng.
符号说明
A—路段集合
A*—受损路段集合,A*⊆A
b—单位路段容量恢复预算
B—恢复决策的路网恢复预算
Bmax—最大可接受恢复预算
Ca,t—灾后t时刻路段a的容量,a∈A
ΔCa—受损路段的恢复量,a∈A*
da—路段a的长度,a∈A
D—应急恢复持续时间
Dmax—最大可接受应急恢复完成时间
Dmin—最小可接受应急恢复完成时间
fa, t—灾后t时刻路段a的流量,a∈A
fp, w, t—灾后t时刻,连接交通起讫点(OD)对w的第p条路径上的流量,p∈Pw, t,w∈W
G—道路交通网络
L—恢复资源类型集合
M—恢复预算类型集合
N—节点集合
Pw, t—t时刻,连接OD对w的所有路径的集合,w∈W
qw—OD对间w的出行需求,w∈W
Q—路网总出行需求
R—加权韧性
R1—路网性能韧性
R2—恢复速度韧性
sa, t—灾后t时刻受损路段a的恢复情况,a∈A*
t—时间步
t0—灾前初始时刻
te—灾害发生时刻
ts—应急恢复开始时刻
Δt—单位时间步时长
va—路段a的受损程度,0≤va≤1,a∈A
w—OD对
W—OD对集合
xa, l, t—0-1变量,若资源类型为l的恢复活动在t时刻在路段a开始,则xa, l, t=1,否则xa, l, t=0,l∈L,a∈A*
ya, m—0-1变量,若路段a的恢复预算类型为m,则ya, m=1,否则ya, m=0,m∈M,a∈A*
z0a—路段a的0流时间阻抗,a∈A
za, t—灾后t时刻,路段a的时间阻抗,a∈A
γ—路段阻抗容忍系数,γ≥1
δa, p, w, t—0-1变量,表示路径和路段的关系,若t时刻,路段a在OD对w的第p条路径上,δa, p, w, t=1,否则δa, p, w, t=0,a∈A,p∈Pw, t,w∈W
ε—加权因子,决定韧性指标R1和R2相对重要性
ζl—l恢复资源类型恢复活动所需资源数量,l∈L
ηmax—最大可用恢复资源数量
ηt—灾后t时刻,同时使用的恢复资源数量
θa, t—灾后t时刻,路段a的连通状态,a∈A*
λn—节点n的加权客流介数,n∈N
Π—遗传算法中的染色体
ρm—m恢复预算类型下的路段恢复程度,m∈M
σl—l恢复资源类型下的路段恢复速度,l∈L
τa—受损路段的恢复持续时间,a∈A*
φ(t)—灾后t时刻的路网性能函数,即应急恢复阶段的路网运行状态评价指标
φ'(t)—全面恢复阶段的路网运行状态评价指标
φ(t0)—灾前初始时刻的路网性能函数
当前的道路交通网络灾后恢复决策研究多被建模为预算约束下的选择问题或者资源约束下的排程问题[2,4].选择问题用于确定灾后最优的待恢复路段及路段恢复活动.如,Chen等[5]通过构建一个随机整数规划模型,解决了多种不确定灾害场景下货运网络恢复措施最优配置.Liao等[6]进一步通过灾前准备和灾后恢复工作的综合建模,求解了给定资源在灾前和灾后的最优配置.排程问题用于确定网络中受损路段的恢复时序.如,李成兵等[7]研究了城市群客运交通网络分别在随机攻击、蓄意攻击和不完全信息攻击下的最优恢复决策.Karamlou等[8]考虑到震后恢复的多阶段性,提出了一个可解决多目标优化问题的多输入遗传算子遗传算法,研究了资源约束下震后公路交通网络多阶段恢复决策优化问题.Hackl等[9]构建包含资源约束与预算约束的双层规划模型,基于模拟退火算法求解了受损路段的恢复时序和恢复措施类型.Liu等[10]基于恢复速度和恢复轨迹饱和度的韧性指标,构建了资源约束下的双目标规划模型,以获得最优的恢复决策集.
随着研究的不断深入,越来越多复杂的现实因素被考虑进灾后恢复决策建模,使得模型能够更加准确高效地解决灾后恢复问题.其中恢复过程中的各种不确定性作为影响恢复决策的重要因素被大量研究.Zhang等[11]提出总恢复时间和恢复曲线偏移度的韧性指标,研究了给定资源下,路段日均流量和路段恢复时间不确定场景下的震后公路-桥梁网络的恢复决策优化问题.Li等[12]在恢复决策建模中综合了选择问题与排程问题,以获得路段恢复持续时间不确定场景下震后应急恢复阶段的最优待恢复路段集合及恢复时序.同时,相关研究越来越重视灾后用户出行行为对恢复决策的影响,经典的用户均衡模型是模拟灾后路网交通流分布的主要方法[12⇓-14].此外,Zhao等[3]基于弹性用户均衡模型,研究了变出行需求下的灾后恢复资源分配问题.Mao等[4]构建了基于路段的日变交通流分配模型,用于描述路网恢复过程中的不平衡网络流.恢复决策问题与其他决策优化问题的综合建模也是当前研究的热点.例如,Maya-Duque等[14]和Moreno等[15]考虑了恢复过程中的路径决策问题,假设恢复人员只能抵达路网中可达的受损路段.Zhang等[16]假设恢复人员对灾后路网状态未知,通过对检查人员路径优化问题和恢复决策问题的综合建模,以求解灾后最优的路网状态检查路径和受损路段恢复时序.García-Alviz等[17]研究了应急物资配送与应急恢复决策的综合优化问题.除此之外,多种不同功能网络耦合下的韧性评估和优化也开始受到关注和重视.如,缪惠全等[18]基于网络流理论,研究了地震灾害下水电耦合网络的韧性评估方法.颜文婷等[19]构建了电网韧性评价指标,提出了以电网韧性为优化对象的双层规划模型,考虑了震后交通网络受损对于电网抢修过程的影响.
目前道路交通网络灾后恢复决策研究仍然存在以下不足:① 绝大多数研究多从整个路网层面探究资源约束和预算约束对受损路段恢复时序的影响,预设了不同路段的恢复所需时间和恢复程度,但忽视了不同路段在客流承载量、长度、通行能力和受损程度等方面异质性导致的不同路段恢复速度和恢复程度差异对路网恢复效果的影响;② 现有研究多假设受损路段是完全中断或恢复,对于路段通行能力部分恢复下路网性能变化认识不足.
本文通过构建基于路段阻抗容忍度的路网连通性度量指标,评价受损路段通行能力部分恢复下的道路交通网络性能,以加权路网功能和恢复速度的韧性指标为优化目标,考虑了资源分配和预算分配导致的不同路段恢复速度和恢复程度的差异,建立了道路交通网络灾后恢复决策优化模型,提出了基于改进编译码方法的遗传算法和Frank-Wolfe算法的双层模型求解算法.
1 模型构建
1.1 基本假设与问题描述
本文采用有向网络G={N, A}表示道路交通网络.图1表示了重大自然灾害下道路交通网络多阶段恢复过程的韧性演化曲线.不同恢复阶段的恢复对象和目标等不同,度量不同阶段路网性能的指标也不同,因此在相同的恢复决策下不同阶段有不同的韧性演化曲线.在te之前,路网性能都保持在初始值φ(t0),φ'(t0);te时刻,灾害事件发生,路网中大量路段A*⊆A受损,路网性能骤降为φ(te),φ'(te);ts时刻,应急恢复开始,路网中受损路段逐一恢复,路网性能逐渐恢复,直到在ts+D时刻,此时应急恢复结束,φ(t)恢复到初始值φ(t0);之后路网性能保持不变,直到ts+Dmax,应急恢复阶段结束,全面恢复开始,φ'(t)逐渐恢复到初始值φ'(t0).
图1
图1
重大自然灾害下道路交通网络多阶段韧性演化曲线
Fig.1
Multi-stage resilience evolution curves of road transportation network of major natural disasters
1.2 基于路段阻抗的路网连通性评估指标
从路段服务水平的角度出发,本文构建的基于路段时间阻抗容忍度的网络连通性评价函数为
式(2)通过判断灾后路段时间阻抗za,t能否满足一定的连通要求来计算路段连通水平θa,t.通过用户均衡配流模型,计算出不同路段的流量fa,t,进而计算出灾后路段时间阻抗za,t.基于路段的连通性,式(1)通过[1-
1.3 道路交通网络韧性度量指标
为便于计算,将式(3)中的积分进行了离散化处理,其中,t1<t2<…<tk,t1=ts,tk=ts+Dmax-Δt,t(i+1)-ti=Δt.
通过式(4)归一化应急恢复阶段恢复持续时间D,得到恢复速度韧性指标R2,以反映应急恢复阶段道路交通网络从灾害中恢复的能力,R2值越大,应急恢复决策下路网恢复能力越强,0≤R2≤1-Dmin/Dmax.若应急恢复过程持续时间D超过应急恢复阶段持续时间Dmax或小于最小应急恢复时间Dmin,R2=0.
1.4 应急恢复阶段恢复决策优化模型
上层模型为整数规划模型,除确定应急恢复阶段待恢复路段的选择和恢复时序,同时通过确定待恢复路段的恢复资源与预算类型决定路段的恢复速度和恢复程度,目标是最大化路网韧性.上层模型为
式(5)为上层模型目标函数,最大化加权路网性能韧性R1和恢复速度韧性R2的路网韧性R;式(3)~(4)为两韧性指标的计算函数;式(6)为模型计算的离散时间集合;式(7)保证每条受损路段最多只有一种恢复预算类型;式(8)保证每条受损路段最多只有一种恢复资源类型;式(9)计算受损路段的恢复量ΔCa,由路段的初始容量
下层模型为用户均衡配流模型,用于求解应急恢复过程中各ti时刻路网性能φ(ti),以评价上层的恢复决策.下层模型为
式(16)~(19)为标准的用户均衡配流问题,其中目标函数(16)计算ti时刻网络的均衡流,式(17)保证路网中所有出行需求都能被满足,式(18)保证
2 算法设计
2.1 改进遗传算法的编译码过程
式中:Π的长度为路网中受损路段的数量 |A*|,表示恢复决策;三维向量
基于构建的三维向量染色体,采用如下步骤确定染色体对应的路网恢复时序和有限恢复资源的分配过程.
第1步 初始化.设定初始的时刻,ti=ts;待恢复路段优先度V为|A*|;受损路段连通状态
第2步 染色体译码.基于各路段的基因
第3步 计算各路段恢复持续时间τa.基于各路段的恢复资源类型l和恢复预算类型m,获得各路段恢复程度ρm和恢复速度σl,进而基于式(9)~(10)计算各路段恢复持续时间τa.转至第4步.
第4步 判断ti时间步下路段恢复优先度κ为V的受损路段a的状态.若
第5步 判断剩余恢复资源
第6步 V=V-1,若V>0转至第4步;否则,令a=
第7步 若
通过以上译码过程,可获得各受损路段的恢复决策变量
2.2 双层模型求解算法
本文采用改进编译码方法的遗传算法和Frank-Wolfe算法求解上文模型,具体求解步骤如图2所示.
图2
3 案例分析
3.1 高速公路网
为验证模型和算法的有效性,基于贵州省2020年7月24日高速公路门架数据,以毕节市以及六盘水市、安顺市和贵阳市部分区域组成的高速公路网为研究对象,构建如图3所示的无向拓扑网络.其中,节点以县(区)为单位,将地级市管辖范围内的区划为一个节点,如贵阳市的白云区、云岩区等均归为节点3.研究区域内有20个节点、27条路段、380对OD.本文假设t0=0 d,在第te=2 d发生灾害,路网中15条路段受到不同程度的破坏,受损路段参数如表1所示,应急恢复开始时间ts=5 d,应急恢复阶段持续时间Dmax=120 d,最小应急恢复持续时间Dmin=20 d.本文提出了4类恢复资源类型和4类恢复预算类型.如表2所示,为不同恢复资源类型l对应恢复活动所需资源数量ζl与恢复速度 σl和不同恢复预算类型m对应恢复活动的路段恢复程度ρm.模型其他参数取值:b=1 元/(km·辆·h-1), ηmax=6,Bmax=6万元,α=0.15,β=4,Δt=1 d,ε=0.5,γ=2.遗传算法取值:种群规模为150,迭代次数为120,交叉概率为0.75,位变异概率为0.1,交换变异概率为0.1.
图3
表1 受损路段参数
Tab.1
a | (辆·h-1) | va/ % | da/ km | a | (辆·h-1) | va/ % | da/ km |
---|---|---|---|---|---|---|---|
3 | 4 200 | 50 | 54 | 11 | 4 200 | 75 | 72 |
4 | 4 200 | 100 | 125 | 12 | 4 200 | 75 | 77 |
5 | 4 200 | 50 | 35 | 13 | 4 200 | 100 | 57 |
6 | 4 200 | 50 | 30 | 14 | 4 200 | 50 | 71 |
7 | 4 200 | 100 | 54 | 15 | 4 200 | 100 | 86 |
8 | 4 200 | 75 | 49 | 16 | 4 200 | 50 | 61 |
9 | 4 200 | 25 | 64 | 17 | 4 200 | 100 | 27 |
10 | 4 200 | 50 | 74 | - | - | - | - |
表2 恢复资源与恢复预算的类型
Tab.2
l | ζl | σl/(km·辆·h-1·d-1) | m | ρm/% |
---|---|---|---|---|
0 | 4 | 1 200 | 0 | 100 |
1 | 3 | 900 | 1 | 75 |
2 | 2 | 600 | 2 | 50 |
3 | 1 | 300 | 3 | 25 |
3.2 最优决策分析
基于本文模型和算法及上述参数,最优决策恢复调度方案的甘特图如图4所示.图中,每一个横条代表一个受损路段的恢复情况,其中每一横条起始端和终点端分别为路段恢复开始时间和结束时间,横条长度为恢复持续时间,横条内的数字分别对应恢复预算类型和恢复资源类型.如,路段17第 56 d 开始恢复,第69 d完成恢复,恢复持续时间13 d,恢复资源类型为1,恢复预算类型为0.
图4
图5
图5
未考虑路段恢复程度差异的恢复决策1
Fig.5
Recovery decision 1 without considering differences in road section recovery degree
图6
图6
未考虑路段恢复速度差异的恢复决策2
Fig.6
Recovery decision 2 without considering the difference in road section recovery speed
如表3所示,相较于决策1,最优决策多消耗了0.17%的恢复预算并降低了2.61%的R2,但提高了32.62%的R1.主要原因有两点:① 最优决策通过合理分配预算,使得在B=6万元的约束下,更多的路网受损通行能力得到恢复,因此R2较高,但导致恢复持续时间较长,R1较低;② 不同路段的承载客流和受损程度不同,它们连通所需的路段通行能力恢复量也不同.决策1恢复完成后,路段6、15、17的出行阻抗仍不满足出行容忍度,恢复完成后的路网性能仅为0.72.而最优决策通过提高路段6、15、17的恢复程度,保障了应急恢复结束后的路网性能,提高了R1,同时通过降低路段5、7、10的恢复程度,有效缩短了恢复持续时间,避免R2的大幅降低.这说明忽略不同路段的恢复程度差异可能导致路段恢复过度或不足,从而影响恢复效果,证明了灾后路网恢复决策中考虑路网恢复程度差异的必要性.
表3 不同场景下的恢复决策的恢复效果
Tab.3
决策 | R | R1 | R2 | R3 |
---|---|---|---|---|
最优决策 | 0.57 | 0.65 | 0.47 | 59 496 |
决策1 | 0.49 | 0.49 | 0.48 | 58 490 |
决策2 | 0.53 | 0.59 | 0.47 | 59 496 |
决策3 | 0.54 | 0.64 | 0.44 | 59 496 |
如表3所示,相较于决策2,最优决策对于路网韧性的提升主要表现在路网性能韧性,提高10.17%的R1.不同路段的长度、受损程度和恢复程度不同,它们的受损容量恢复量也不同.最优决策通过高效地分配恢复资源,决定不同路段的恢复速度,保障在恢复早期有更多受损路段被恢复,提高R1,同时不影响路网整体的恢复完成时间,保障R2.如t=50 d前,最优决策恢复完成了11条路段,而决策2中路段4长时间占用恢复资源影响了其他路段的恢复,使得决策2在t=50 d前只恢复完成了7条路段.因此,这表明忽略不同路段的恢复速度差异会导致一些路段对于恢复工作组的过度占用,进而影响整体恢复效果,验证了灾后路网恢复决策中考虑路网恢复速度差异的必要性.
为度量节点重要性对路网恢复决策的影响,构建了图7所示的基于节点重要度的路网恢复决策3.具体地,本文依据路段所连节点的客流介数和从大到小排序确定了各路段的恢复优先度.表4所示为灾前路网中各节点的加权客流介数,其定义为最短路经过该节点的OD对的客流和与总客流的比值.相较基于节点重要度的路网恢复决策,最优恢复决策可提高2.58%的路网性能韧性、6.46%的恢复速度韧性和3.52%的加权韧性.对比图8所示的两恢复决策的韧性演化曲线,虽然基于节点重要度的恢复决策通过保障重要节点的快速连通使得路网在恢复早期有更高的性能水平,但是降低了恢复过程整体的路网性能和恢复速度.同时,该恢复决策相较未考虑路段恢复差异的恢复决策仍然有更优的恢复效果,进一步说明了本文在路网恢复决策中考虑路段恢复差异的必要性.由此,在路网大面积受损的情况下,路网恢复决策受到众多复杂因素影响,仅凭借路网的某一属性特征往往无法实现最优的恢复效果,尤其是本文在优化待恢复受损路段的选择和恢复时序的同时,考虑了不同路段的恢复速度和恢复程度差异.
图7
表4 节点加权客流介数
Tab.4
n | λn | n | λn |
---|---|---|---|
1 | 0.004 952 | 11 | 0.019 446 |
2 | 0.042 081 | 12 | 0.049 604 |
3 | 0.098 184 | 13 | 0.042 434 |
4 | 0.051 280 | 14 | 0.052 372 |
5 | 0.056 473 | 15 | 0.074 173 |
6 | 0.033 682 | 16 | 0.018 612 |
7 | 0.076 761 | 17 | 0.030 656 |
8 | 0.057 031 | 18 | 0.070 485 |
9 | 0.067 571 | 19 | 0.050 111 |
10 | 0.063 737 | 20 | 0.040 354 |
图8
图8
最优决策、决策1、决策2和决策3的韧性演化曲线
Fig.8
Resilience evolution curves of Optimal decision, Decision 1, Decision 2, and Decision 3
3.3 敏感性分析
本节分析了最大可用恢复资源数量ηmax、最大可接受恢复预算Bmax、路段阻抗容忍系数γ和韧性加权因子ε取值变化对路网恢复效果的影响,验证了模型算法在不同参数取值下的有效性.
图9所示分别为6种ηmax下,最优决策与未考虑路段恢复速度差异决策的R1、R2和R.结果显示,6种ηmax下,最优决策均可以获得更好的恢复效果.最优决策平均可以提高R1、R2和R分别约3.96%、7.32%和5.29%.随着ηmax的增大,两类恢复决策的恢复效果差距逐渐增大,表明在恢复资源充足下尤其要考虑不同路段的恢复速度差异.此外,随着ηmax增大,两类决策下的韧性值逐渐增大,但增长速度逐渐变慢,这表明增加恢复资源对于路网恢复效果提升的边际效益在逐渐降低.然而,最优决策的边际效益降低速度明显低于未考虑路段恢复速度差异的决策.6种预算下,最优恢复决策增加恢复资源数量对R、R1和R2提升的平均边际效益为0.071、0.066和0.075,高于未考虑路段恢复速度差异决策的0.063、0.054和0.071,可提高约12.69%、22.93%和5.47%.这表明在恢复决策中考虑路段恢复速度差异,可以有效提高恢复资源数量增加所产生的边际效益.
图9
图9
不同资源约束下路段恢复速度差异对路网韧性影响
Fig.9
Impact of difference in recovery speeds of road sections on road network resilience under different resource constraints
图10所示分别为6种Bmax下最优决策与未考虑路段恢复程度差异决策的R1、R2和R.6种Bmax下,最优决策可平均提高74.58%的R1、6.50%的R2和23.70%的R.这再次证明了在路网恢复决策中考虑路段恢复程度差异的必要性.随着Bmax增加,受损路网的容量得到了更多的恢复,同时也导致了路网恢复所需时间延长.因此,R1均呈增大趋势,R2均呈减小趋势,同时最优决策能够保证R的不断增大.当Bmax由6 万元增长到7 万元后,最优决策的3种韧性的值都不再变化.这主要是因为此时各路段的恢复程度为保障路网连通的最小值,路段恢复程度的变化对于路网性能的提升较小,但会大幅降低恢复速度韧性,进而使加权韧性降低.因此,当Bmax增大到一定值后,路网的恢复程度不再变化.然而,对于未考虑路段恢复程度差异的恢复决策,Bmax=6 万元后,恢复预算的增加反而导致了加权韧性的降低.由图5可知,当Bmax=6 万元时,在未考虑路段恢复程度差异的恢复决策中,路段15未被分配恢复后勤资源.此后,随着恢复后勤资源的增加,由于未考虑不同路段的恢复程度,所以路段15得到恢复.但是,显然路段15恢复对于恢复速度韧性的减小影响大于路网性能韧性的增加,它的恢复反而对路网恢复效果造成了负面影响.因此,在恢复决策中考虑路段恢复程度差异有助于更好地平衡路网性能韧性和恢复速度韧性.
图10
图10
不同预算约束下路段恢复程度差异对路网韧性影响
Fig.10
Impact of difference in recovery degrees of road sections on road network resilience under different budget constraints
在保持其他变量不变的情况下,图11列出了γ分别为1.5、2.0和2.5下,最优决策、未考虑路段恢复速度差异决策和未考虑路段恢复程度差异决策的路网恢复效果.结果表明,3种γ下,最优决策均能表现出更优的恢复效果,相较未考虑路段恢复速度差异决策和未考虑路段恢复程度差异决策,可分别平均提高3.25%和10.53%的R.此外,γ越小,最优决策对于路网恢复效果的提升作用越大.因此,在路段阻抗容忍系数较低的恢复决策中尤其要考虑路段恢复速度差异和路段恢复程度差异.
图11
图11
不同路段阻抗容忍系数时不同决策恢复效果
Fig.11
Recovery effect of different decisions at different impedance tolerance coefficients of different road sections
在控制其他变量情况下,图12列出了ε分别为0.1、0.3、0.5、0.7和0.9下,最优决策、未考虑路段恢复速度差异决策和未考虑路段恢复程度差异决策的路网恢复效果.结果表明,5种ε下,最优决策均能表现出更优的恢复效果,相较未考虑路段恢复速度差异决策和未考虑路段恢复程度差异决策,可分别平均提高4.84%和16.36%的R.此外,ε越大,最优决策对于路网恢复效果的提升作用越大.因此,当以路网性能韧性作为恢复决策的主要优化目标时,尤其要注重路段恢复速度差异和路段恢复程度差异.
图12
图12
不同目标函数加权因子下不同决策恢复效果
Fig.12
Recovery performance of different decisions at different weighting factors of objective function
4 结论
本文针对道路交通网络应急恢复决策问题,提出了基于路段阻抗满足度的路网连通性评价指标,采用加权路网性能韧性和恢复速度韧性的韧性指标,构建了道路网络恢复决策双层优化模型,在获得待恢复路段集合与路段恢复时序后,通过路段层面的资源分配与预算分配获得待恢复路段的恢复程度和恢复速度,以贵州省区域高速公路网为例,开展了分析和研究.
(1) 考虑路段恢复速度或恢复程度差异的恢复决策方案可以有效提高路网恢复效果,考虑路段恢复程度差异可以有效避免路段过度恢复造成的路网恢复时间增加或者恢复不足造成的路网性能水平的降低,考虑路段恢复速度差异有助于更加高效地使用恢复资源.
(2) 敏感性分析表明:考虑路段恢复速度差异可以有效提高资源增加对路网韧性提升的边际效益.考虑路段恢复程度差异有助于恢复决策更好地平衡路网性能韧性和恢复速度韧性.路段阻抗容忍系数越小、加权因子越偏向路网性能韧性,考虑路段恢复速度和恢复程度差异对路网恢复效果的提升作用越大.
(3) 重大自然灾害后及在路网恢复过程中,路网的OD需求会发生一定程度的变化,将在后续的研究中进一步考虑变OD需求下的路网恢复决策问题.
参考文献
灾后恢复的特征与可恢复性评价的研究
[J].
Research on characters of recovery stage and recoverability assessment in emergency management
[J].
Transportation infrastructure restoration optimization considering mobility and accessibility in resilience measures
[J].
Resilience-based optimization of postdisaster restoration strategy for road networks
[J].
Resilience: An indicator of recovery capability in intermodal freight transport
[J].
A resilience optimization model for transportation networks under disasters
[J].
城市群客运交通网络可靠性修复仿真
[J].
Simulation of passenger traffic network reliability restoration in urban agglomeration
[J].
Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience
[J].
Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing
[J].
Optimal restoration schedules of transportation network considering resilience
[J].
Resilience-based post-disaster recovery strategies for road-bridge networks
[J].
Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty
[J].
Post-disaster recovery sequencing strategy for road networks
[J].
Network repair crew scheduling and routing for emergency relief distribution problem
[J].
A branch-and-benders-cut algorithm for the crew scheduling and routing problem in road restoration
[J].
Modeling interaction of emergency inspection routing and restoration scheduling for postdisaster resilience of highway-bridge networks
[J].
Planning road network restoration and relief distribution under heterogeneous road disruptions
[J].
功能耦合的城市水电网络抗震韧性分析方法
[J].
Seismic resilience analysis of urban water and power networks with functional coupling characteristics
[J].
考虑地震攻击交通网影响的配电网韧性评估及提升策略
[J].
DOI:10.16183/j.cnki.jsjtu.2022.152
[本文引用: 1]
严重的地震灾害不仅会造成配电网大面积停电,还会损坏交通网,阻碍配电网恢复资源的运输,进而减缓配电网恢复.考虑地震攻击交通网的影响,提出地震灾害下配电网的韧性评估方法及韧性提升策略.首先,基于地震动峰值加速度建立反映地震灾害与交通-配电网故障概率关系的地震攻击模型,量化地震灾害对交通-配电网的影响,并生成交通-配电网故障场景.其次,引入配电网抢修队等待道路修复疏通时间,提出配电网韧性评估指标.再次,构建考虑故障线路抢修、道路修复疏通以及应急资源调度的配电网恢复双层优化模型并求解,上层优化模型以最小失电负荷量为目标,下层优化模型以最短配电网抢修队等待道路修复疏通时间为目标.最后,采用12节点交通网与IEEE33节点配电网耦合算例,验证所提韧性指标的可行性以及恢复方法的有效性.结果表明:考虑地震攻击交通网影响的配电网韧性评估指标更准确,所提的恢复策略能有效提升地震灾害下配电网韧性.
Resilience evaluation and enhancement strategy of distribution network considering the impact of seismic attack on transportation networks
[J].
Post-earthquake resilience assessment and long-term restoration prioritization of transportation network
[J].
Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model
[J].
Resilience of transportation systems: Concepts and comprehensive review
[J].
带工艺约束并行机调度问题的一种新的遗传算法
[J].以最小化拖期任务数为目标,研究了解决一类带工艺约束并行机调度问题的新的遗传算法.基于向量组的染色体编码方法简单、译码快速,并能自动满足工艺约束;扩展的顺序交叉算子EOX能自动满足工艺约束并尽量保留父代遗传信息,在较大程度上优于传统的交叉算子;位变异和交换变异相结合的变异方法有利于更好保持种群的多样性.大量模拟数据与生产线应用实例表明本文所提的基于向量组编码的遗传算法是相当有效的.
New Genetic algorithm for parallel machine scheduling with process constraint
[J].A new genetic algorithm is studied for solving parallel machine scheduling problems with process constraint to minimize the total number of tardy jobs.A so-called vector-group coding method is presented,which shows the quality of coding simply,decoding fast and satisfying process constraints automatically.A new crossover operator named Extended Order Crossover (EOX) is then proposed,which has the merits of automatically satisfying procedure constraints and preserving much genetic information.Mutation,the other genetic operator,is implemented with the combination of bit-mutation and swap-mutation to keep the population diverse.The algorithm behaves more efficiently than others experimentally using various random data and application instance from practical production line.
/
〈 |
|
〉 |
