光泵磁力仪中垂直腔面发射激光器激光波长锁定
Wavelength Locking of Vertical-Cavity Surface-Emitting Laser in Optically Pumped Magnetometer
通讯作者: 刘 华,副教授;E-mail:liuyuhua@sjtu.edu.cn.
责任编辑: 王历历
收稿日期: 2022-09-23 修回日期: 2022-12-11 接受日期: 2022-12-21
基金资助: |
|
Received: 2022-09-23 Revised: 2022-12-11 Accepted: 2022-12-21
作者简介 About authors
骆曼箬(1997-),硕士生,从事VCSEL激光研究.
针对光泵磁力仪(OPM)对小型化、低功耗以及激光光源波长稳定性的要求,提出一套垂直腔面发射激光器激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以 133Cs 原子D1线Fg = 4→Fe = 3超精细能级跃迁波长为参考波长,OPM的原子蒸汽气室同时作为波长锁定的工作气室,无需任何额外装置即可将激光波长锁定在该D1线跃迁波长.使用数字比例积分微分控制与模糊控制算法进行激光的温度控制,使温度波动在 ±0.005 ℃ 内;采用基于电流镜的激光电流驱动方案,使电流波动在±50 nA内,为激光波长锁定提供了良好的硬件基础.最后,在实验室环境下实现OPM长达2 h的稳定信号输出.
关键词:
Aimed at the requirements of optically pumped magnetometer (OPM) for miniaturization, low power consumption and laser frequency stability, a wavelength locking control scheme for vertical-cavity surface-emitting laser is proposed. The proposed method of laser wavelength locking based on Doppler absorption optical feedback takes the wavelength of D1 line Fg = 4→Fe = 3 transition in 133Cs atom as the reference. The atom vapor cell in OPM is also used as the working cell for wavelength locking so that the laser wavelength can be locked on the corresponding wavelength of the D1 line transition without any additional setup. The digital proportional integral differential and fuzzy control algorithm is used for laser temperature control and the temperature fluctuation is within ±0.005 ℃. Laser current driving is realized based on current mirror and the current fluctuation is within ±50 nA, which provides a good hardware foundation for laser wavelength locking. Finally, a stable signal output of the OPM for up to two hours under laboratory conditions is realized.
Keywords:
本文引用格式
骆曼箬, 李绍良, 黄艺明, 张弛, 吴招才, 刘华.
LUO Manruo, LI Shaoliang, HUANG Yiming, ZHANG Chi, WU Zhaocai, LIU Hua.
被动稳频没有标准的参考频率,仅凭借低噪声的驱动电流和稳定的温度使激光输出频率稳定.对于主动稳频来说,良好的被动稳频是前提.半导体激光器内部通常集成负温度系数(Negative Temperature Coefficient,NTC)热敏电阻和半导体制冷片(Thermo Electric Cooler,TEC)[14],分别用于温度传感和激光制冷或制热.对于激光器的电流和温度控制,部分研究者使用商用激光电流驱动器和温度控制器[15],但是商用的控制器价格昂贵、体积大、功耗高,尤其不适用于小型光泵磁力仪(Optically Pumped Magnetometer, OPM);部分研究者自主设计激光电流驱动和温控电路[16⇓⇓⇓⇓-21].在激光器电流控制方案上,采用Howland恒流源或者其他形式的压控电流源来实现激光电流驱动,但是这类电流源通常不适用于小电流驱动;而垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser, VCSEL)的驱动电流只有几毫安,电流驱动精度和稳定性远远不够;在激光器温度控制方案上,使用模拟比例积分微分(Proportional Integral Differential, PID)电路、运放和金属氧化物半导体场效应管实现TEC电流驱动控制电路或者使用TEC集成温度控制器进行激光温度控制.集成温度控制器大多为美信公司的MAX1978etm+,通过外置模拟PID补偿网络实现TEC电流控制.但模拟PID控制方案中,PID参数固定且难以调节,而且模拟器件的参数会随着时间发生变化,环境适应能力差,不利于温度的稳定控制.
针对以上研究中的不足,提出一套VCSEL激光波长锁定控制方案.以 133Cs 原子D1线Fg = 4→Fe = 3(Fg和Fe分别表示基态和激发态能级)超精细跃迁波长为参考波长,将OPM的原子蒸汽气室直接作为波长锁定工作气室,不需增加额外装置.基于碱金属原子多普勒吸收的光反馈信号获取鉴频信号,采用PID控制算法得到波长校正信号并反馈到激光的驱动电流,通过电流闭环的方式将激光输出波长锁定在该跃迁线上,解决了波长锁定装置复杂,不适用于小型化OPM的问题.同时,为满足激光波长锁定对激光驱动电流和工作温度稳定性的要求,采用基于电流镜的压控电流源方案进行激光电流驱动,并通过硬件限流和软件延时保护激光器;在温度控制上,将亚德诺半导体技术有限公司的ADN8835集成温度控制器配置为数字PID控制形式,通过软件滤波抑制温度采集信号中的噪声干扰,使用模糊PID控制算法[22]调整TEC的电流,从而稳定激光器温度,弥补了过往研究中在激光驱动电流控制和温度控制方面的不足.
1 VCSEL波长锁定原理分析
波长锁定首先需要选取合适的参考波长.碱金属OPM需要共振或近共振的激光极化原子和探测电子自旋极化,当特定波长的激光穿过原子蒸汽气室,其中的碱金属原子会吸收光子发生跃迁.对于碱金属磁力仪,由于多普勒效应引起的谱线展宽量级为几百兆赫兹量级,远比自然线宽和压力展宽大,其吸收谱线近似为高斯线型[23],即
式中:f为泵浦激光的频率;f0为共振频率;αD为谱线半宽度,计算式[23]为
式中:c为光在真空中的传播速度;k为玻尔兹曼常数;m为发光粒子质量;T为气体温度.
对于133Cs原子的D1线,由于基态和激发态均分裂为两个超精细能级,故对应的超精细能级跃迁有4种,分别是Fg = 3→Fe = 4、Fg = 3→Fe = 3、Fg = 4→Fe = 4和Fg = 4→Fe = 3.相关的超精细能级结构如图1所示.在某一超精细跃迁波长附近扫描激光波长(λ),检测透过气室的光强信号,当共振或近共振的激光穿过碱金属蒸汽气室极化碱金属原子时,透过气室的光强因碱金属原子吸收光子而将急剧下降,该透射信号曲线与原子的吸收谱线变化趋势相反.经归一化处理后的透射信号强度曲线和由透射信号强度差分运算后得到的鉴频信号如图2所示.其一阶导曲线与波长近似线性关系的区域可作为鉴频信号来判定激光输出波长与 133Cs 原子该超精细能级跃迁波长之间的误差.鉴频信号为0表明激光波长与 133Cs 原子D1线该超精细能级跃迁波长相同.由此,以 133Cs 原子D1线某一超精细能级跃迁波长作为参考波长,利用OPM中碱金属原子的多普勒吸收, 可直接使用碱金属蒸汽气室的透射光强信号获取激光波长校正信号用于激光波长锁定.
图1
图2
图2
气室透射信号和鉴频信号
Fig.2
Transmitted signal through cell and signal for frequency discrimination
为了满足OPM对低功耗的要求,选择美国Vixar公司生产的895 nm±0.5 nm单模VCSEL作为泵浦光源.通常在激光器内部会集成热敏电阻和热电制冷片用于激光的温度控制,其封装为TO-46,内部结构如图3所示.根据VCSEL的工作原理[24-25],其输出波长与驱动电流和工作温度在一定条件下为线性关系,可通过调整驱动电流或工作温度的方式调整激光的输出波长[26-27].由于VCSEL激光波长对电流的敏感度比对温度的敏感度高,且电流控制比温度控制更简单迅速,故选择使用电流闭环的方式调整激光输出波长.检测气室透射光强经差分运算获得鉴频信号,利用 PID控制算法得到波长校正信号并反馈到驱动电流,以电流闭环的方式可使激光输出波长锁定在133Cs原子某一超精细能级跃迁波长上.
图3
2 实验装置与电路方案
铯原子OPM实验装置如图4,温度控制模块为激光提供合适且稳定的工作温度,VCSEL输出的线偏振光经透镜和圆偏振片(Circularly Polarized Lens, CPL)后转为圆偏振光σ+,极化气室里的铯原子;光电二极管(Photodiode, PD)将透过气室的光信号转换为电流信号并通过跨阻放大器实现电流-电压转换,该电压信号in中有直流和交流分量.其中,由有源带通滤波器提取的交流分量具有两个作用:一是经移相放大后得到out0信号用于磁力仪自激振荡;二是经放大后得到out2信号用于磁场解算.直流分量由两个级联的二阶巴特沃斯低通滤波器提取,获得out1信号即直流光信号Vpd用于波长锁定.扫描驱动电流,即对激光进行扫频,在示波器OS2上可观测到4个吸收点,对应133Cs原子D1线的4种超精细能级跃迁,当且仅当激光波长在吸收点上时,能够在示波器OS1上观察到磁力仪振荡信号.
图4
激光温度控制方案如图5所示,由温度传感和放大电路(蓝色虚线框部分)、主控模块(红色虚线框部分)、TEC控制模块(绿色虚线框部分)组成.图中:ADC为模数转换器;MCU为微控制单元;DAC为数模转换器;ADN8835为TEC驱动芯片,IN1N、IN1P、OUT1、OUT2、IN2N、IN2P、LDR、SW为芯片引脚;Vref为参考电压.主控模块根据采集到的温度信号Vout1,使用模糊PID算法调整TEC控制模块的控制电压Vcon的大小,从而控制VCSEL的温度.射极跟随器输出电压Vout2=Vcon.温度传感由激光内集成的NTC实现, NTC阻值RNTC与温度之间的关系如下:
图5
NTC阻值与温度之间的非线性导致采集的温度信号与实际温度之间的非线性,用适当的补偿电阻Rx与热敏电阻串联,可在指定范围内达到最佳线性.激光工作温度在50 ℃左右,选择线性区间42~60 ℃.Rx的值由下式可得,即
式中:Rlow、Rmid、Rhigh分别为NTC在42、51和 60 ℃ 时的阻值.匹配电阻R的值由下式计算,即
式中:RNTC为NTC在目标温度 54 ℃ 左右时的阻值.Rx与R最终取值分别为2.49 kΩ和5.6 kΩ.
温度信号对实际温度的增益以及温度信号的采集精度会直接影响温度控制精度和稳定性.采集精度主要由ADC位数决定,温度增益由反馈电阻Rf决定.由于ADC的转换范围由ADN8835芯片决定,为0~2.5 V,增大反馈电阻的同时,可表示的温度范围也会随之缩小,所以两者之间需要折中选择.表1给出不同反馈电阻对应的参数.
表1 反馈电阻对应的参数
Tab.1
Rf/kΩ | 温度增益/ (mV·℃-1) | 采集精度 要求/μV | 表示温度 范围/℃ |
---|---|---|---|
5.6 | 25 | 25 | 0~133 |
10 | 45 | 45 | 24~85 |
22 | 100 | 100 | 42~66 |
图6
TEC由ADN8835内部的控制器和驱动器控制.TEC两端的电压VTEC与Vcon之间的关系由下式给出:
当VTEC>0,TEC制冷;当VTEC<0,TEC制热.
由于激光内部集成的TEC体积小,且目标温度远大于室温,当激光温度大于目标温度时,只需降低加热强度,激光温度便可迅速降低.给定不同控制电压Vcon,TEC的阶跃响应如图7所示,微弱的电压变化也会使温度迅速改变.在控制起始阶段,由于温度误差较大,Vcon为1.33 V,对TEC进行全速加热;当实际温度接近目标温度时,使用模糊PID算法自适应控制,使温度逐渐趋于目标温度.
图7
图8
图8
VCSEL驱动电流控制方案示意图
Fig.8
Schematic diagram of VCSEL injection current control scheme
ADL5315外部的限流电阻Rlim和设定电阻Rset分别用来限制最大输出电流Imax和设定电压Vset与激光器驱动电流Iout转换关系.它们之间的关系如下:
DAC输出控制电压范围为0~4.096 V,为了保护激光管,最大电流限制为2 mA,Rset与Rlim的最终取值分别为2 kΩ和21 kΩ.图9给出电压电流转换关系,转换系数约为0.5 μA/mV,18位DAC的控制步长为15.63 μV,对应的电流变化为7.82 nA.
图9
图10
表2 跃迁波长对应的驱动电流
Tab.2
跃迁能级 | λ/nm | Iout/mA |
---|---|---|
Fg = 3 → Fe = 4 | 894.5862 | 1.07308 |
Fg = 3 → Fe = 3 | 894.5893 | 1.08033 |
Fg = 4 → Fe = 4 | 894.6107 | 1.13221 |
Fg = 4 → Fe = 3 | 894.6138 | 1.13907 |
133Cs原子D1线有4种超精细能级跃迁,不同超精细能级跃迁谱线的强度有差异,与跃迁强度因子和光泵浦效应因子有关[28].基于图4的实验装置,固定VCSEL的工作温度,通过波长扫描实验可以发现在相同温度下,激光电流越大,功率越高,光吸收的现象也更加明显,故选取 133Cs 原子D1线 Fg=4→Fe=3超精细跃迁波长作为锁定的参考基准,如图11所示.图中:λ0为能使原子气室吸收最强的入射激光波长;t1为单向扫电流时间.在波长锁定过程中,首先通过电流扫描程序找到该跃迁吸收点所对应电流值,此时在示波器OS1上可看到稳定的磁力仪信号;每输出一次控制信号前,在当前电流点附近小范围正向扫电流,电流控制模块采集来自图4中out1输出的信号Vpd,并使用软件滤波消除其中的高频噪声,通过差分运算获取鉴频信号.在小范围扫电流过程中会求得多个鉴频信号,以它们的均值作为最终的鉴频信号并作为PID的输入.同时PID以鉴频信号为0作为控制目标,使用增量式PID算法得到电流设定电压Vset增量,从而相应地调整VCSEL驱动电流大小.
图11
图11
133Cs原子Fg = 4→Fe = 3超精细能级跃迁参考频率
Fig.11
Reference frequency of Fg = 4→Fe = 3 hyperfine level transition in 133Cs atom
图12给出4种情况下的波长锁定示意图,当前电流为I0,令电流从I1等步长扫到I2,对应可得到一组透射信号和鉴频信号,取这组鉴频信号的均值作为最终的鉴频信号为PID的输入.可以看出,当实际激光波长偏大时,最终的鉴频信号为正,PID将控制激光驱动电流减小;当实际激光波长偏小时,最终的鉴频信号为负,PID将控制激光驱动电流增大;当实际激光波长在锁定目标处时,最终的鉴频信号为0,PID将保持激光驱动电流不变,从而使激光输出波长锁定在该超精细能级跃迁波长附近.
图12
图13给出设计的温度控制和电流控制电路实物.NTC、TEC和Iout与VCSEL TO-46封装的引脚相连,其中NTC的地端与Iout的地端为同一引脚.Vpd来自光信号处理模块的out1输出端.装置体积相比于商业激光电流驱动和温控产品大大缩小,由于研究阶段加入额外帮助调试的电路模块在后期可删减,同时器件布局还可优化,所以体积有进一步减小的空间;在功耗方面,所需供电电压不超过5 V,用于温度控制的TEC体积小,加热到工作温度所需的电流不超过20 mA,同时VCSEL的激光驱动电流不超过2 mA,对电路系统的功耗进行优化后可实现电池供电,直接集成到OPM系统中.
图13
图13
激光温度控制与电流控制印刷电路板实物
Fig.13
Printed circuit boards for laser temperature and current control
3 实验结果与分析
基于以上实验装置和控制方案,在实验环境为室温25 ℃的室内,分别测试温度控制效果和电流控制效果.温度控制稳定性测试结果如图14所示,分别采用了经典PID和模糊PID算法,可以发现,经典PID虽然响应更快,但是模糊PID温度控制稳定性更优.在激光温度达到目标温度前加入模糊PID控制,存在短时间的振荡,然后温度逐渐趋向目标温度并稳定,整个系统大概在20 s左右达到目标温度,温度波动在 ±0.005 ℃ 内.所用VCSEL输出波长的温度系数为0.06 nm/℃,故温度波动导致的VCSEL输出波长波动将小于±3×10-4 nm.
图14
图14
PID温度控制实验结果
Fig.14
Experimental results of temperature control by using PID
在0~2 mA的范围内选取4个电流点进行稳定性测试,不同电流大小的测试结果如图15所示,驱动电流波动在 ±50 nA 以内.VCSEL的电流系数为 0.416 41 nm/mA,则激光对应的波长波动小于±2.1×10-5 nm.
图15
图16
图17
4 结语
针对OPM对小型化、低功耗和泵浦激光输出波长稳定性的要求,设计了一套VCSEL激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以OPM中的原子蒸汽气室为波长锁定的工作气室,不需要增加额外的装置,利用多普勒吸收的光反馈获得鉴频信号,采用电流闭环的方式进行波长锁定,可使VCSEL激光输出波长锁定在 133Cs 原子D1线Fg=4→Fe = 3超精细跃迁波长附近,为OPM提供长期稳定的泵浦激光. 同时,为实现VCSEL激光波长锁定提供了温度和驱动电流控制方案.激光温度控制方案不同于以往文献中使用经典模拟PID电路控制,而是使用数字PID,并采用模糊控制算法,参数调节灵活、自适应能力强,能够实现更高的稳定性.激光电流驱动控制方案采用基于电流镜的压控电流源设计,使电流稳定性和控制精度远远高于常用的Howland电流源电路方案.该方案电路结构简单、尺寸小、稳定性高且成本低,可用于替代高成本、大体积的商业半导体激光器控制产品,为小型化OPM中的泵浦激光提供稳定的工作温度和电流.
利用所提VCSEL激光输出波长锁定控制方案在OPM实验装置上进行测试,在实验室环境下实现了OPM长达2 h的稳定输出.该方案不仅可用于OPM,同时也为其他需要对激光进行波长锁定的小型化原子传感器提供了方案参考.
参考文献
Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation
[J]. ,DOI:10.1364/AO.58.000734 URL [本文引用: 1]
The optimization and stabilization of pump light frequency in the minimized atomic magnetometer
[J]. ,
Experimental optimization of atomic magnetometer in nuclear magnetic resonance gyroscope
[J]. ,
Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer
[J]. ,DOI:10.1364/OE.416797 PMID:33726048 [本文引用: 1]
In the spin-exchange relaxation-free (SERF) magnetometer, the probe noise is a consequential factor affecting the gradiometric measurement sensitivities. In this paper, we proposed a new characteristics model of the probe noise based on noise separation. Different from noise analysis on single noise source, we considered most of the noise sources influencing the probe system and realized noise sources level measurement experimentally. The results demonstrate that the major noise type changes with the signal frequency. Below 10 Hz, the probe noise mainly comes from the sources independent of light intensity such as the vibration, which accounts for more than 50%; while at 30 Hz, the photon shot noise and the magnetic noise are the main origins, with proportion about 43% and 32%, respectively. Moreover, the results indicate that the optimal probe light intensity with highest sensitivity appears when the response of the magnetic noise is equal to the sum of the electronic noise and half of the shot noise. The optimal intensity gets larger with higher signal frequency. The noise characteristics model could be applied in modulating or differential optical systems and helps sensitivity improvement in SERF magnetometer.
Single-species atomic comagnetometer based on Rb87 atoms
[J]. ,
VCSEL frequency stabilization for optically pumped magnetometers
[J]. ,
The developing condition analysis of semiconductor laser frequency stabilization technology
[J]. ,
原子陀螺仪用激光稳频技术进展与趋势分析
[J]. ,
Progress and trend analysis of laser frequency stabilization technology for atomic gyroscopes
[J]. ,
Infrared laser locking to a rubidium saturated absorption spectrum via a photonic chip frequency doubler
[J]. ,DOI:10.1364/OL.44.001150 PMID:30821735 [本文引用: 1]
To extend the coherence of quantum transitions for laser locking, as well as increase the compactness and stability of the experimental setup, we propose to utilize photonic integrated resonators with high second-harmonic (SH) generation efficiencies as reliable frequency doublers that link the desired frequencies with the frequency references. In this Letter, a sufficiently strong SH signal up to microwatts was generated by a photonic integrated frequency doubler using a milliwatt infrared (IR) laser source. Furthermore, an increased SH generation bandwidth covering Rb85 and Rb87D transition lines, as well as saturated absorption spectroscopy, was demonstrated by tuning the pump power and chip temperature. Here we present, to the best of our knowledge, the first successful locking of an IR laser to Rb saturated absorption lines via a photonic chip frequency doubler.
Demonstration of dichroic atomic vapor laser lock in micro fabricated vapor cell using light induced atomic desorption
[C]// .
Laser with 10-13 short-term instability for compact optically pumped cesium beam atomic clock
[J]. ,DOI:10.1364/OE.381147 URL [本文引用: 1]
We realize a high-stability laser by modulation transfer spectroscopy and apply it to implement a high-performance compact optically pumped cesium beam atomic clock. Evaluated by the optical heterodyne method with two identical frequency-stabilized lasers, the frequency instability of the 852 nm laser directly referenced on thermal atoms is 2.6×10−13 at the averaging time of 5 s. Factors degrading the frequency stability of the laser are analyzed, and we will further control it to reduce the frequency noise of the laser. By comparing with a Hydrogen maser, the measured Allan deviation of the high-stability-laser-based cesium beam atomic clock is 2\n \n\t×\n\t\n\t 10\n\t \n\t −\n\t 12\n\t \n\t\n\t\n\t /\n\t\n\t\n\t τ\n\t\n \n, dropping to 1×10−14 in less than half a day of averaging time. To our knowledge, the Allan deviation of our cesium clock is better than that of any reported compact cesium beam atomic clocks at the averaging time of half-day. The high-performance atomic clock can promote the fields in metrology and timekeeping, and the high-stability laser additionally possesses great potential to be a compact optical frequency standard.
Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers
[J]. ,
用于铯原子磁力仪的双AOM激光稳频系统
[J]. ,
Double AOM laser frequency stabilization system for cesium atomic magnetometer
[J]. ,
半导体制冷元件特性参数测量及选用
[J]. ,
Measurement for the characteristic parameters and selection of thermoelectric cooling modules
[J]. ,
基于F-P腔的激光频率稳定传递方法
[J]. ,
Laser frequency stabilization transmission method based on an F-P cavity
[J]. ,
CPT原子钟VCSEL波长锁定环路的设计与实现
[J]. ,DOI:10.7538/yzk.2017.51.06.1140 [本文引用: 1]
以Cs原子D<sub>2</sub>线的跃迁频率作为波长锁定参考频率,采用多波长多普勒吸收光谱波长锁定方法,设计CPT(相干布居囚禁)原子钟的VCSEL(垂直腔面发射激光器)波长锁定环路,设计的环路波长控制精度优于0.000 6 nm,稳定度优于2.84×10<sup>-7</sup>,能稳定实现VCSEL波长在852.4 nm附近的锁定,并在此基础上获得了高信噪比的CPT信号。该VCSEL波长锁定环路已应用于CPT原子钟实验系统,频率稳定度测试结果说明,该VCSEL波长锁定环路各项性能指标完全满足被动型CPT原子钟的需求。
Design and realization of VCSEL wavelength locked loop of CPT atomic clock
[J]. ,
半导体激光器驱动电路及温控系统设计
[J]. ,
Design of Driving circuit and temperature control system for semiconductor laser
[J]. ,
高精度激光器电流驱动与交流温控系统设计
[J]. ,
Design of current drive and alternating current temperature control system for high-precision laser
[J]. ,
用于CO2气体检测的 VCSEL 激光器温控系统设计
[J]. ,
Design of temperature controller for VCSEL laser used in CO2 gas detection
[J]. ,
高稳定度半导体激光器电源
[J]. ,
High-stability power for semiconductor lasers
[J]. ,
模糊控制系统的解析结构与鲁棒性分析
[J]. ,
An analytical study on structure and robustness of fuzzy control systems
[J]. ,
Analyzing and measuring the diode laser’s linewidth affected by the driving current’s white noise
[J]. ,DOI:10.1364/JOSAB.460608 URL [本文引用: 1]
It is important to study the effect of injection current’s noise on the diode laser’s linewidth. In this paper, the effect of the white noise applied to the injection current on the linewidth of diode laser is investigated theoretically and experimentally. Theoretically, by adding the non-Markov noise term into the Langevin equation, the output laser’s linewidth of the diode laser with the white noise current is obtained. In experiment, an optical Fabry–Perot (F–P) cavity with a linewidth of \n \n\t\n\t ∼\n\t\n\t1.83\n\t\n\t\n\t M\n\t H\n\t z\n\t\n \n and a finesse of \n \n\t\n\t ∼\n\t\n\t136\n \n is employed to measure a 1560.5 nm distributed-feedback (DFB)-type diode laser’s linewidth. With an increase of the white noise intensity, the laser linewidth is broadened from \n \n\t\n\t ∼\n\t\n\t\n\t 2\n\t\n \n to \n \n\t\n\t ∼\n\t\n\t60\n\t\n\t\n\t M\n\t H\n\t z\n\t\n \n gradually, and the line shape is characterized evolving from Lorentzian function to Gaussian function. At the same level of white noise intensity, the laser linewidth decreases with increase of the injection current. The accuracy of our measurements is verified based on the fiber-delayed and acousto-optic modulator (AOM)-shifted self-heterodyne scheme and the optical F–P cavity linewidth measurement method. The 1560.5 nm laser is boosted by using an erbium-doped fiber amplifier (EDFA) and is frequency doubled to 780.25 nm by a fiber-pigtailed, single-pass PPMgO:LN waveguide module, and the laser linewidth is visually observed and verified by broadening of the saturated absorption spectra of rubidium atoms. Clearly this linewidth manipulation method of diode lasers based on broadband white noise current coupling can be extended to other wavelength diode lasers and can be applied to laser measurement, laser communication, and other fields for different requirements.
/
〈 | 〉 |