上海交通大学学报, 2024, 58(4): 438-448 doi: 10.16183/j.cnki.jsjtu.2022.371

航空航天

光泵磁力仪中垂直腔面发射激光器激光波长锁定

骆曼箬1, 李绍良2, 黄艺明1, 张弛1, 吴招才3, 刘华,1

1.上海交通大学 电子信息与电气工程学院,上海 200240

2.上海航天控制技术研究所 上海空间智能控制技术重点实验室,上海 201109

3.自然资源部 第二海洋研究所,杭州 310012

Wavelength Locking of Vertical-Cavity Surface-Emitting Laser in Optically Pumped Magnetometer

LUO Manruo1, LI Shaoliang2, HUANG Yiming1, ZHANG Chi1, WU Zhaocai3, LIU Hua,1

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shanghai Key Laboratory of Space Intelligent Control Technology, Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China

3. Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

通讯作者: 刘 华,副教授;E-mail:liuyuhua@sjtu.edu.cn.

责任编辑: 王历历

收稿日期: 2022-09-23   修回日期: 2022-12-11   接受日期: 2022-12-21  

基金资助: 上海航天先进技术联合研究基金(USCAST2019-23)
上海交通大学“深蓝计划”基金项目(SL2021ZD202)

Received: 2022-09-23   Revised: 2022-12-11   Accepted: 2022-12-21  

作者简介 About authors

骆曼箬(1997-),硕士生,从事VCSEL激光研究.

摘要

针对光泵磁力仪(OPM)对小型化、低功耗以及激光光源波长稳定性的要求,提出一套垂直腔面发射激光器激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以 133Cs 原子D1线Fg = 4→Fe = 3超精细能级跃迁波长为参考波长,OPM的原子蒸汽气室同时作为波长锁定的工作气室,无需任何额外装置即可将激光波长锁定在该D1线跃迁波长.使用数字比例积分微分控制与模糊控制算法进行激光的温度控制,使温度波动在 ±0.005 ℃ 内;采用基于电流镜的激光电流驱动方案,使电流波动在±50 nA内,为激光波长锁定提供了良好的硬件基础.最后,在实验室环境下实现OPM长达2 h的稳定信号输出.

关键词: 光泵磁力仪; 垂直腔面发射激光器; 波长锁定; 激光稳频

Abstract

Aimed at the requirements of optically pumped magnetometer (OPM) for miniaturization, low power consumption and laser frequency stability, a wavelength locking control scheme for vertical-cavity surface-emitting laser is proposed. The proposed method of laser wavelength locking based on Doppler absorption optical feedback takes the wavelength of D1 line Fg = 4→Fe = 3 transition in 133Cs atom as the reference. The atom vapor cell in OPM is also used as the working cell for wavelength locking so that the laser wavelength can be locked on the corresponding wavelength of the D1 line transition without any additional setup. The digital proportional integral differential and fuzzy control algorithm is used for laser temperature control and the temperature fluctuation is within ±0.005 ℃. Laser current driving is realized based on current mirror and the current fluctuation is within ±50 nA, which provides a good hardware foundation for laser wavelength locking. Finally, a stable signal output of the OPM for up to two hours under laboratory conditions is realized.

Keywords: optically pumped magnetometer (OPM); vertical-cavity surface-emitting laser (VCSEL); wavelength locking; laser frequency stabilization

PDF (16216KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

骆曼箬, 李绍良, 黄艺明, 张弛, 吴招才, 刘华. 光泵磁力仪中垂直腔面发射激光器激光波长锁定[J]. 上海交通大学学报, 2024, 58(4): 438-448 doi:10.16183/j.cnki.jsjtu.2022.371

LUO Manruo, LI Shaoliang, HUANG Yiming, ZHANG Chi, WU Zhaocai, LIU Hua. Wavelength Locking of Vertical-Cavity Surface-Emitting Laser in Optically Pumped Magnetometer[J]. Journal of Shanghai Jiaotong University, 2024, 58(4): 438-448 doi:10.16183/j.cnki.jsjtu.2022.371

半导体激光二极管具有功耗低、体积小、可调谐等优良特性,在原子钟、原子磁力仪、原子陀螺仪等原子传感器中具有广泛的应用.对于原子磁力仪,激光输出波长稳定性直接影响碱金属原子极化的稳定性[1],如果不稳定会导致磁力仪灵敏度降低甚至信号不稳定而无法进行磁场探测.为了降低上述影响,激光波长锁定必不可少[2-5].激光波长锁定即激光稳频,包括主动稳频和被动稳频,二者区别在于是否使用稳定的参考频率[6-7].

主动稳频以某一稳定的参考频率作为基准,通过对激光电流或温度的闭环反馈将激光频率锁定在该参考频率上[8].目前常用的激光主动稳频方案主要有饱和吸收光谱法[9]、双色激光稳频法[10]和调制转移光谱法[11-13].这些稳频方案虽然理论上能够达到更高的稳频精度,但因为需要增加额外的光路结构和装置,且需要对激光分束,会导致系统结构复杂、体积大、成本和功耗变高,这些限制在很多自主研发的小型化原子传感器中不可接受.

被动稳频没有标准的参考频率,仅凭借低噪声的驱动电流和稳定的温度使激光输出频率稳定.对于主动稳频来说,良好的被动稳频是前提.半导体激光器内部通常集成负温度系数(Negative Temperature Coefficient,NTC)热敏电阻和半导体制冷片(Thermo Electric Cooler,TEC)[14],分别用于温度传感和激光制冷或制热.对于激光器的电流和温度控制,部分研究者使用商用激光电流驱动器和温度控制器[15],但是商用的控制器价格昂贵、体积大、功耗高,尤其不适用于小型光泵磁力仪(Optically Pumped Magnetometer, OPM);部分研究者自主设计激光电流驱动和温控电路[16-21].在激光器电流控制方案上,采用Howland恒流源或者其他形式的压控电流源来实现激光电流驱动,但是这类电流源通常不适用于小电流驱动;而垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser, VCSEL)的驱动电流只有几毫安,电流驱动精度和稳定性远远不够;在激光器温度控制方案上,使用模拟比例积分微分(Proportional Integral Differential, PID)电路、运放和金属氧化物半导体场效应管实现TEC电流驱动控制电路或者使用TEC集成温度控制器进行激光温度控制.集成温度控制器大多为美信公司的MAX1978etm+,通过外置模拟PID补偿网络实现TEC电流控制.但模拟PID控制方案中,PID参数固定且难以调节,而且模拟器件的参数会随着时间发生变化,环境适应能力差,不利于温度的稳定控制.

针对以上研究中的不足,提出一套VCSEL激光波长锁定控制方案.以 133Cs 原子D1线Fg = 4→Fe = 3(Fg和Fe分别表示基态和激发态能级)超精细跃迁波长为参考波长,将OPM的原子蒸汽气室直接作为波长锁定工作气室,不需增加额外装置.基于碱金属原子多普勒吸收的光反馈信号获取鉴频信号,采用PID控制算法得到波长校正信号并反馈到激光的驱动电流,通过电流闭环的方式将激光输出波长锁定在该跃迁线上,解决了波长锁定装置复杂,不适用于小型化OPM的问题.同时,为满足激光波长锁定对激光驱动电流和工作温度稳定性的要求,采用基于电流镜的压控电流源方案进行激光电流驱动,并通过硬件限流和软件延时保护激光器;在温度控制上,将亚德诺半导体技术有限公司的ADN8835集成温度控制器配置为数字PID控制形式,通过软件滤波抑制温度采集信号中的噪声干扰,使用模糊PID控制算法[22]调整TEC的电流,从而稳定激光器温度,弥补了过往研究中在激光驱动电流控制和温度控制方面的不足.

1 VCSEL波长锁定原理分析

波长锁定首先需要选取合适的参考波长.碱金属OPM需要共振或近共振的激光极化原子和探测电子自旋极化,当特定波长的激光穿过原子蒸汽气室,其中的碱金属原子会吸收光子发生跃迁.对于碱金属磁力仪,由于多普勒效应引起的谱线展宽量级为几百兆赫兹量级,远比自然线宽和压力展宽大,其吸收谱线近似为高斯线型[23],即

L(f)=ln 2/παDexp -ln2αD2(f-f0)2

式中:f为泵浦激光的频率;f0为共振频率;αD为谱线半宽度,计算式[23]

αD=f0c2kTmln2

式中:c为光在真空中的传播速度;k为玻尔兹曼常数;m为发光粒子质量;T为气体温度.

对于133Cs原子的D1线,由于基态和激发态均分裂为两个超精细能级,故对应的超精细能级跃迁有4种,分别是Fg = 3→Fe = 4、Fg = 3→Fe = 3、Fg = 4→Fe = 4和Fg = 4→Fe = 3.相关的超精细能级结构如图1所示.在某一超精细跃迁波长附近扫描激光波长(λ),检测透过气室的光强信号,当共振或近共振的激光穿过碱金属蒸汽气室极化碱金属原子时,透过气室的光强因碱金属原子吸收光子而将急剧下降,该透射信号曲线与原子的吸收谱线变化趋势相反.经归一化处理后的透射信号强度曲线和由透射信号强度差分运算后得到的鉴频信号如图2所示.其一阶导曲线与波长近似线性关系的区域可作为鉴频信号来判定激光输出波长与 133Cs 原子该超精细能级跃迁波长之间的误差.鉴频信号为0表明激光波长与 133Cs 原子D1线该超精细能级跃迁波长相同.由此,以 133Cs 原子D1线某一超精细能级跃迁波长作为参考波长,利用OPM中碱金属原子的多普勒吸收, 可直接使用碱金属蒸汽气室的透射光强信号获取激光波长校正信号用于激光波长锁定.

图1

图1   133Cs原子超精细能级结构

Fig.1   Hyperfine energy level structure of 133Cs


图2

图2   气室透射信号和鉴频信号

Fig.2   Transmitted signal through cell and signal for frequency discrimination


为了满足OPM对低功耗的要求,选择美国Vixar公司生产的895 nm±0.5 nm单模VCSEL作为泵浦光源.通常在激光器内部会集成热敏电阻和热电制冷片用于激光的温度控制,其封装为TO-46,内部结构如图3所示.根据VCSEL的工作原理[24-25],其输出波长与驱动电流和工作温度在一定条件下为线性关系,可通过调整驱动电流或工作温度的方式调整激光的输出波长[26-27].由于VCSEL激光波长对电流的敏感度比对温度的敏感度高,且电流控制比温度控制更简单迅速,故选择使用电流闭环的方式调整激光输出波长.检测气室透射光强经差分运算获得鉴频信号,利用 PID控制算法得到波长校正信号并反馈到驱动电流,以电流闭环的方式可使激光输出波长锁定在133Cs原子某一超精细能级跃迁波长上.

图3

图3   TO-46封装的VCSEL

Fig.3   VCSEL mounted in a TO-46 can


2 实验装置与电路方案

铯原子OPM实验装置如图4,温度控制模块为激光提供合适且稳定的工作温度,VCSEL输出的线偏振光经透镜和圆偏振片(Circularly Polarized Lens, CPL)后转为圆偏振光σ+,极化气室里的铯原子;光电二极管(Photodiode, PD)将透过气室的光信号转换为电流信号并通过跨阻放大器实现电流-电压转换,该电压信号in中有直流和交流分量.其中,由有源带通滤波器提取的交流分量具有两个作用:一是经移相放大后得到out0信号用于磁力仪自激振荡;二是经放大后得到out2信号用于磁场解算.直流分量由两个级联的二阶巴特沃斯低通滤波器提取,获得out1信号即直流光信号Vpd用于波长锁定.扫描驱动电流,即对激光进行扫频,在示波器OS2上可观测到4个吸收点,对应133Cs原子D1线的4种超精细能级跃迁,当且仅当激光波长在吸收点上时,能够在示波器OS1上观察到磁力仪振荡信号.

图4

图4   实验装置示意图

Fig.4   Schematic diagram of experimental setup


激光温度控制方案如图5所示,由温度传感和放大电路(蓝色虚线框部分)、主控模块(红色虚线框部分)、TEC控制模块(绿色虚线框部分)组成.图中:ADC为模数转换器;MCU为微控制单元;DAC为数模转换器;ADN8835为TEC驱动芯片,IN1N、IN1P、OUT1、OUT2、IN2N、IN2P、LDR、SW为芯片引脚;Vref为参考电压.主控模块根据采集到的温度信号Vout1,使用模糊PID算法调整TEC控制模块的控制电压Vcon的大小,从而控制VCSEL的温度.射极跟随器输出电压Vout2=Vcon.温度传感由激光内集成的NTC实现, NTC阻值RNTC与温度之间的关系如下:

RNTC=10exp38921298-1273+T

图5

图5   VCSEL温度控制方案示意图

Fig.5   Schematic diagram of VCSEL temperature control scheme


NTC阻值与温度之间的非线性导致采集的温度信号与实际温度之间的非线性,用适当的补偿电阻Rx与热敏电阻串联,可在指定范围内达到最佳线性.激光工作温度在50 ℃左右,选择线性区间42~60 ℃.Rx的值由下式可得,即

Rx=RlowRmid+RmidRhigh-2RlowRhighRlow+Rhigh-2Rmid

式中:RlowRmidRhigh分别为NTC在42、51和 60 ℃ 时的阻值.匹配电阻R的值由下式计算,即

$R={{R}_{x}}+{{R}_{NTC}}$

式中:RNTC为NTC在目标温度 54 ℃ 左右时的阻值.RxR最终取值分别为2.49 kΩ和5.6 kΩ.

温度信号对实际温度的增益以及温度信号的采集精度会直接影响温度控制精度和稳定性.采集精度主要由ADC位数决定,温度增益由反馈电阻Rf决定.由于ADC的转换范围由ADN8835芯片决定,为0~2.5 V,增大反馈电阻的同时,可表示的温度范围也会随之缩小,所以两者之间需要折中选择.表1给出不同反馈电阻对应的参数.

表1   反馈电阻对应的参数

Tab.1  Parameters corresponding to different feedback resistors

Rf/kΩ温度增益/
(mV·℃-1)
采集精度
要求/μV
表示温度
范围/℃
5.625250~133
10454524~85
2210010042~66

新窗口打开| 下载CSV


NTC如图5所示接入放大电路中,补偿电阻Rx为2.49 kΩ,匹配电阻R为5.6 kΩ,当反馈电阻Rf分别为5.6、10、22 kΩ时,主控模块采集的温度信号Vout1与实际温度之间的关系如图6所示.为了使温度增益较大的同时能表示的温度范围包含线性区且具有较好的线性度,选择22 kΩ的反馈电阻;为了满足采集精度要求,选择20位的ADC用于模数转换.

图6

图6   Vout1与TEC温度的关系

Fig.6   Vout1 versus temperature of TEC


TEC由ADN8835内部的控制器和驱动器控制.TEC两端的电压VTECVcon之间的关系由下式给出:

${{V}_{TEC}}=6.25-5{{V}_{con}}$

VTEC>0,TEC制冷;当VTEC<0,TEC制热.

由于激光内部集成的TEC体积小,且目标温度远大于室温,当激光温度大于目标温度时,只需降低加热强度,激光温度便可迅速降低.给定不同控制电压Vcon,TEC的阶跃响应如图7所示,微弱的电压变化也会使温度迅速改变.在控制起始阶段,由于温度误差较大,Vcon为1.33 V,对TEC进行全速加热;当实际温度接近目标温度时,使用模糊PID算法自适应控制,使温度逐渐趋于目标温度.

图7

图7   TEC阶跃响应

Fig.7   Step response of TEC


激光驱动电流控制方案设计如图8所示,由主控模块(红色虚线框部分)以及压控电流模块(蓝色虚线框部分)组成.图中:ADL5315为精密电流镜芯片,VSET、INPT、IOUT、RLIM均为芯片引脚.主控模块采集图4中信号处理模块的Vpd信号,通过软件滤波消除高频干扰,控制 DAC 输出相应的电压Vset,该电压将使ADL5315电流镜芯片输出成比例的电流Iout.

图8

图8   VCSEL驱动电流控制方案示意图

Fig.8   Schematic diagram of VCSEL injection current control scheme


ADL5315外部的限流电阻Rlim和设定电阻Rset分别用来限制最大输出电流Imax和设定电压Vset与激光器驱动电流Iout转换关系.它们之间的关系如下:

Imax=48Rlim+3
Iout=VsetRset

DAC输出控制电压范围为0~4.096 V,为了保护激光管,最大电流限制为2 mA,RsetRlim的最终取值分别为2 kΩ和21 kΩ.图9给出电压电流转换关系,转换系数约为0.5 μA/mV,18位DAC的控制步长为15.63 μV,对应的电流变化为7.82 nA.

图9

图9   电压电流转换关系

Fig.9   Voltage versus current


固定VCSEL的工作温度,扫描驱动电流便可实现激光波长扫描.如图10所示,激光扫描电流范围为1~1.2 mA,存在4个跃迁吸收点.对于 133Cs 原子,其D1线的4个能级跃迁对应的波长是固定的,表2给出其对应的波长和驱动电流大小.对4个吸收点进行线性拟合,可以得到VCSEL的电流系数为 0.41641 nm/mA,即驱动电流一个控制步长对应激光波长变化约为3.26×10-6 nm.

图10

图10   激光波长与驱动电流之间的关系

Fig.10   Laser wavelength versus injection current


表2   跃迁波长对应的驱动电流

Tab.2  Transition wavelengths and corresponding injection current

跃迁能级λ/nmIout/mA
Fg = 3 → Fe = 4894.58621.07308
Fg = 3 → Fe = 3894.58931.08033
Fg = 4 → Fe = 4894.61071.13221
Fg = 4 → Fe = 3894.61381.13907

新窗口打开| 下载CSV


133Cs原子D1线有4种超精细能级跃迁,不同超精细能级跃迁谱线的强度有差异,与跃迁强度因子和光泵浦效应因子有关[28].基于图4的实验装置,固定VCSEL的工作温度,通过波长扫描实验可以发现在相同温度下,激光电流越大,功率越高,光吸收的现象也更加明显,故选取 133Cs 原子D1线 Fg=4→Fe=3超精细跃迁波长作为锁定的参考基准,如图11所示.图中:λ0为能使原子气室吸收最强的入射激光波长;t1为单向扫电流时间.在波长锁定过程中,首先通过电流扫描程序找到该跃迁吸收点所对应电流值,此时在示波器OS1上可看到稳定的磁力仪信号;每输出一次控制信号前,在当前电流点附近小范围正向扫电流,电流控制模块采集来自图4中out1输出的信号Vpd,并使用软件滤波消除其中的高频噪声,通过差分运算获取鉴频信号.在小范围扫电流过程中会求得多个鉴频信号,以它们的均值作为最终的鉴频信号并作为PID的输入.同时PID以鉴频信号为0作为控制目标,使用增量式PID算法得到电流设定电压Vset增量,从而相应地调整VCSEL驱动电流大小.

图11

图11   133Cs原子Fg = 4→Fe = 3超精细能级跃迁参考频率

Fig.11   Reference frequency of Fg = 4→Fe = 3 hyperfine level transition in 133Cs atom


图12给出4种情况下的波长锁定示意图,当前电流为I0,令电流从I1等步长扫到I2,对应可得到一组透射信号和鉴频信号,取这组鉴频信号的均值作为最终的鉴频信号为PID的输入.可以看出,当实际激光波长偏大时,最终的鉴频信号为正,PID将控制激光驱动电流减小;当实际激光波长偏小时,最终的鉴频信号为负,PID将控制激光驱动电流增大;当实际激光波长在锁定目标处时,最终的鉴频信号为0,PID将保持激光驱动电流不变,从而使激光输出波长锁定在该超精细能级跃迁波长附近.

图12

图12   4种情况下的波长锁定

Fig.12   Wavelength locking in four cases


图13给出设计的温度控制和电流控制电路实物.NTC、TEC和Iout与VCSEL TO-46封装的引脚相连,其中NTC的地端与Iout的地端为同一引脚.Vpd来自光信号处理模块的out1输出端.装置体积相比于商业激光电流驱动和温控产品大大缩小,由于研究阶段加入额外帮助调试的电路模块在后期可删减,同时器件布局还可优化,所以体积有进一步减小的空间;在功耗方面,所需供电电压不超过5 V,用于温度控制的TEC体积小,加热到工作温度所需的电流不超过20 mA,同时VCSEL的激光驱动电流不超过2 mA,对电路系统的功耗进行优化后可实现电池供电,直接集成到OPM系统中.

图13

图13   激光温度控制与电流控制印刷电路板实物

Fig.13   Printed circuit boards for laser temperature and current control


3 实验结果与分析

基于以上实验装置和控制方案,在实验环境为室温25 ℃的室内,分别测试温度控制效果和电流控制效果.温度控制稳定性测试结果如图14所示,分别采用了经典PID和模糊PID算法,可以发现,经典PID虽然响应更快,但是模糊PID温度控制稳定性更优.在激光温度达到目标温度前加入模糊PID控制,存在短时间的振荡,然后温度逐渐趋向目标温度并稳定,整个系统大概在20 s左右达到目标温度,温度波动在 ±0.005 ℃ 内.所用VCSEL输出波长的温度系数为0.06 nm/℃,故温度波动导致的VCSEL输出波长波动将小于±3×10-4 nm.

图14

图14   PID温度控制实验结果

Fig.14   Experimental results of temperature control by using PID


在0~2 mA的范围内选取4个电流点进行稳定性测试,不同电流大小的测试结果如图15所示,驱动电流波动在 ±50 nA 以内.VCSEL的电流系数为 0.416 41 nm/mA,则激光对应的波长波动小于±2.1×10-5 nm.

图15

图15   不同驱动电流实验结果

Fig.15   Experimental results of different injection currents


分析温度和电流稳定性可以发现,由于温度和电流导致的激光波动将小于 ±3.21×10-4 nm.最后,在实现超高稳定性的温度控制和电流控制的基础上,使用基于多普勒吸收的光反馈波长锁定方案对铯原子OPM进行测试,可以通过图4中的示波器OS1对磁力仪信号进行观测,如图16所示.磁力仪信号处理模块将磁场测量结果通过串口传送到PC端,地磁磁场强度(B)测量的结果如图17所示,最终实现OPM长达 2 h 的稳定输出,大大延长了OPM的工作时间.

图16

图16   示波器观测信号截图

Fig.16   Signals observed on oscilloscope


图17

图17   磁场测量

Fig.17   Measurement of magnetic field


4 结语

针对OPM对小型化、低功耗和泵浦激光输出波长稳定性的要求,设计了一套VCSEL激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以OPM中的原子蒸汽气室为波长锁定的工作气室,不需要增加额外的装置,利用多普勒吸收的光反馈获得鉴频信号,采用电流闭环的方式进行波长锁定,可使VCSEL激光输出波长锁定在 133Cs 原子D1线Fg=4→Fe = 3超精细跃迁波长附近,为OPM提供长期稳定的泵浦激光. 同时,为实现VCSEL激光波长锁定提供了温度和驱动电流控制方案.激光温度控制方案不同于以往文献中使用经典模拟PID电路控制,而是使用数字PID,并采用模糊控制算法,参数调节灵活、自适应能力强,能够实现更高的稳定性.激光电流驱动控制方案采用基于电流镜的压控电流源设计,使电流稳定性和控制精度远远高于常用的Howland电流源电路方案.该方案电路结构简单、尺寸小、稳定性高且成本低,可用于替代高成本、大体积的商业半导体激光器控制产品,为小型化OPM中的泵浦激光提供稳定的工作温度和电流.

利用所提VCSEL激光输出波长锁定控制方案在OPM实验装置上进行测试,在实验室环境下实现了OPM长达2 h的稳定输出.该方案不仅可用于OPM,同时也为其他需要对激光进行波长锁定的小型化原子传感器提供了方案参考.

参考文献

GUO Y H, WAN S G, SUN X G, et al.

Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation

[J]. Applied Optics, 2019, 58(4): 734-738.

DOI:10.1364/AO.58.000734      URL     [本文引用: 1]

JIA Y C, LIU Z C, CHAI Z, et al.

The optimization and stabilization of pump light frequency in the minimized atomic magnetometer

[J]. IEEE Transactions on Instrumentation & Measurement, 2021, 70: 1-9.

[本文引用: 1]

ZHANG K, LUO Z H, TANG F, et al.

Experimental optimization of atomic magnetometer in nuclear magnetic resonance gyroscope

[J]. Japanese Journal of Applied Physics, 2020, 59(3): 030907.

[本文引用: 1]

XING B Z, SUN C, LIU Z A, et al.

Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer

[J]. Optics Express, 2021, 29(4): 5055-5067.

DOI:10.1364/OE.416797      PMID:33726048      [本文引用: 1]

In the spin-exchange relaxation-free (SERF) magnetometer, the probe noise is a consequential factor affecting the gradiometric measurement sensitivities. In this paper, we proposed a new characteristics model of the probe noise based on noise separation. Different from noise analysis on single noise source, we considered most of the noise sources influencing the probe system and realized noise sources level measurement experimentally. The results demonstrate that the major noise type changes with the signal frequency. Below 10 Hz, the probe noise mainly comes from the sources independent of light intensity such as the vibration, which accounts for more than 50%; while at 30 Hz, the photon shot noise and the magnetic noise are the main origins, with proportion about 43% and 32%, respectively. Moreover, the results indicate that the optimal probe light intensity with highest sensitivity appears when the response of the magnetic noise is equal to the sum of the electronic noise and half of the shot noise. The optimal intensity gets larger with higher signal frequency. The noise characteristics model could be applied in modulating or differential optical systems and helps sensitivity improvement in SERF magnetometer.

WANG Z, PENG X, ZHANG R, et al.

Single-species atomic comagnetometer based on Rb87 atoms

[J]. Physical Review Letters, 2020, 124(19): 193002.

[本文引用: 1]

YAN Y G, LIU G, LIN H X, et al.

VCSEL frequency stabilization for optically pumped magnetometers

[J]. Chinese Optics Letters, 2021, 19(12): 121407.

[本文引用: 1]

YAO Y J, ZOU C W, YU H Y, et al.

The developing condition analysis of semiconductor laser frequency stabilization technology

[J]. Journal of Semiconductors, 2018, 39(11): 114004.

[本文引用: 1]

庄铭今, 范晓婷, 王天顺, .

原子陀螺仪用激光稳频技术进展与趋势分析

[J]. 激光杂志, 2021, 42(6): 1-6.

[本文引用: 1]

ZHUANG Mingjin, FAN Xiaoting, WANG Tianshun, et al.

Progress and trend analysis of laser frequency stabilization technology for atomic gyroscopes

[J]. Laser Journal, 2021, 42(6): 1-6.

[本文引用: 1]

XIE J C, WANG J Q, WANG Z B, et al.

Infrared laser locking to a rubidium saturated absorption spectrum via a photonic chip frequency doubler

[J]. Optics Letters, 2019, 44(5): 1150-1153.

DOI:10.1364/OL.44.001150      PMID:30821735      [本文引用: 1]

To extend the coherence of quantum transitions for laser locking, as well as increase the compactness and stability of the experimental setup, we propose to utilize photonic integrated resonators with high second-harmonic (SH) generation efficiencies as reliable frequency doublers that link the desired frequencies with the frequency references. In this Letter, a sufficiently strong SH signal up to microwatts was generated by a photonic integrated frequency doubler using a milliwatt infrared (IR) laser source. Furthermore, an increased SH generation bandwidth covering Rb85 and Rb87D transition lines, as well as saturated absorption spectroscopy, was demonstrated by tuning the pump power and chip temperature. Here we present, to the best of our knowledge, the first successful locking of an IR laser to Rb saturated absorption lines via a photonic chip frequency doubler.

TALKER E, ARORA P, ZEKTZER R, et al.

Demonstration of dichroic atomic vapor laser lock in micro fabricated vapor cell using light induced atomic desorption

[C]// Conference on Lasers and Electro-Optics. San Jose, Washington, D. C., USA: OSA, 2019.

[本文引用: 1]

SHANG H S, ZHANG T Y, MIAO J X, et al.

Laser with 10-13 short-term instability for compact optically pumped cesium beam atomic clock

[J]. Optics Express, 2020, 28(5): 6868-6880.

DOI:10.1364/OE.381147      URL     [本文引用: 1]

We realize a high-stability laser by modulation transfer spectroscopy and apply it to implement a high-performance compact optically pumped cesium beam atomic clock. Evaluated by the optical heterodyne method with two identical frequency-stabilized lasers, the frequency instability of the 852 nm laser directly referenced on thermal atoms is 2.6×10−13 at the averaging time of 5 s. Factors degrading the frequency stability of the laser are analyzed, and we will further control it to reduce the frequency noise of the laser. By comparing with a Hydrogen maser, the measured Allan deviation of the high-stability-laser-based cesium beam atomic clock is 2\n \n\t×\n\t\n\t 10\n\t \n\t −\n\t 12\n\t \n\t\n\t\n\t /\n\t\n\t\n\t τ\n\t\n \n, dropping to 1×10−14 in less than half a day of averaging time. To our knowledge, the Allan deviation of our cesium clock is better than that of any reported compact cesium beam atomic clocks at the averaging time of half-day. The high-performance atomic clock can promote the fields in metrology and timekeeping, and the high-stability laser additionally possesses great potential to be a compact optical frequency standard.

XU Z Y, PENG X X, LI L H, et al.

Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers

[J]. Laser Physics, 2020, 30(2): 025701.

[本文引用: 1]

董海峰, 郭军, 张海洋, .

用于铯原子磁力仪的双AOM激光稳频系统

[J]. 仪器仪表学报, 2020, 41(10): 129-135.

[本文引用: 1]

DONG Haifeng, GUO Jun, ZHANG Haiyang, et al.

Double AOM laser frequency stabilization system for cesium atomic magnetometer

[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 129-135.

[本文引用: 1]

戴维涵, 代彦军, 张鹏, .

半导体制冷元件特性参数测量及选用

[J]. 上海交通大学学报, 2004, 38(10): 1669-1672.

[本文引用: 1]

DAI Weihan, DAI Yanjun, ZHANG Peng, et al.

Measurement for the characteristic parameters and selection of thermoelectric cooling modules

[J]. Journal of Shanghai Jiao Tong University, 2004, 38(10): 1669-1672.

[本文引用: 1]

李欣怡, 李秀飞, 全伟.

基于F-P腔的激光频率稳定传递方法

[J]. 北京航空航天大学学报, 2019, 45(4): 841-846.

[本文引用: 1]

LI Xinyi, LI Xiufei, QUAN Wei.

Laser frequency stabilization transmission method based on an F-P cavity

[J]. Journal of Beijing University of Aeronautics & Astronautics, 2019, 45(4): 841-846.

[本文引用: 1]

陈大勇, 廉吉庆, 翟浩.

CPT原子钟VCSEL波长锁定环路的设计与实现

[J]. 原子能科学技术, 2017, 51(6): 1140-1144.

DOI:10.7538/yzk.2017.51.06.1140      [本文引用: 1]

以Cs原子D<sub>2</sub>线的跃迁频率作为波长锁定参考频率,采用多波长多普勒吸收光谱波长锁定方法,设计CPT(相干布居囚禁)原子钟的VCSEL(垂直腔面发射激光器)波长锁定环路,设计的环路波长控制精度优于0.000 6 nm,稳定度优于2.84&times;10<sup>-7</sup>,能稳定实现VCSEL波长在852.4 nm附近的锁定,并在此基础上获得了高信噪比的CPT信号。该VCSEL波长锁定环路已应用于CPT原子钟实验系统,频率稳定度测试结果说明,该VCSEL波长锁定环路各项性能指标完全满足被动型CPT原子钟的需求。

CHEN Dayong, LIAN Jiqing, ZHAI Hao.

Design and realization of VCSEL wavelength locked loop of CPT atomic clock

[J]. Atomic Energy Science & Technology, 2017, 51(6): 1140-1144.

[本文引用: 1]

程前, 邓华秋.

半导体激光器驱动电路及温控系统设计

[J]. 电子器件, 2019, 42(5): 1185-1189.

[本文引用: 1]

CHENG Qian, DENG Huaqiu.

Design of Driving circuit and temperature control system for semiconductor laser

[J]. Chinese Journal of Electron Devices, 2019, 42(5): 1185-1189.

[本文引用: 1]

缪存孝, 邢国柱, 刘建丰, .

高精度激光器电流驱动与交流温控系统设计

[J]. 红外与激光工程, 2019, 48(9): 0905004.

[本文引用: 1]

MIAO Cunxiao, XING Guozhu, LIU Jianfeng, et al.

Design of current drive and alternating current temperature control system for high-precision laser

[J]. Infrared & Laser Engineering, 2019, 48(9): 0905004.

[本文引用: 1]

吴栋. 可调谐窄线宽半导体激光器驱动设计[D]. 深圳: 深圳大学, 2017.

[本文引用: 1]

WU Dong. Driving design of tunable narrow linewidth semiconductor laser driver[D]. Shenzhen: Shenzhen University, 2017.

[本文引用: 1]

范兴龙, 王彪, 许玥, .

用于CO2气体检测的 VCSEL 激光器温控系统设计

[J]. 激光杂志, 2018, 39(11): 18-21.

[本文引用: 1]

FAN Xinglong, WANG Biao, XU Yue, et al.

Design of temperature controller for VCSEL laser used in CO2 gas detection

[J]. Laser Journal, 2018, 39(11): 18-21.

[本文引用: 1]

田亚玲, 李创社, 张朝阳.

高稳定度半导体激光器电源

[J]. 应用激光, 2020, 40(4): 740-744.

[本文引用: 1]

TIAN Yaling, LI Chuangshe, ZHANG Chaoyang.

High-stability power for semiconductor lasers

[J]. Applied Laser, 2020, 40(4): 740-744.

[本文引用: 1]

胡慧琴, 李少远.

模糊控制系统的解析结构与鲁棒性分析

[J]. 上海交通大学学报, 2005, 39(12): 2029-2033.

[本文引用: 1]

HU Huiqin, LI Shaoyuan.

An analytical study on structure and robustness of fuzzy control systems

[J]. Journal of Shanghai Jiao Tong University, 2005, 39(12): 2029-2033.

[本文引用: 1]

张科. 基于热原子系综的精密测量[D]. 绵阳: 中国工程物理研究院, 2019.

[本文引用: 2]

ZHANG Ke. Precision measurement based on the thermal atomic ensemble[D]. Mianyang: China Academy of Engineering Physics, 2019.

[本文引用: 2]

张开放. 面向原子光学器件的VCSEL激光器驱动电路设计及激光稳频[D]. 太原: 中北大学, 2020.

[本文引用: 1]

ZHANG Kaifang. Design of VCSEL laser drive circuit for atomic optical devices and laser frequency stabilization[D]. Taiyuan: North University of China, 2020.

[本文引用: 1]

李雪. 垂直腔面发射激光器的模式调控与器件研制[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

[本文引用: 1]

LI Xue. Investigations on mode modulation and device fabrication of vertical cavity surface emitting lasers[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022.

[本文引用: 1]

SHAH V. Method for stabilizing atomic devices: US 20180219353[P]. 2018-08-02 [2022-09-15].

[本文引用: 1]

LU F F, HOU X K, WANG X, et al.

Analyzing and measuring the diode laser’s linewidth affected by the driving current’s white noise

[J]. Josa B, 2022, 39(9): 2450-2456.

DOI:10.1364/JOSAB.460608      URL     [本文引用: 1]

It is important to study the effect of injection current’s noise on the diode laser’s linewidth. In this paper, the effect of the white noise applied to the injection current on the linewidth of diode laser is investigated theoretically and experimentally. Theoretically, by adding the non-Markov noise term into the Langevin equation, the output laser’s linewidth of the diode laser with the white noise current is obtained. In experiment, an optical Fabry–Perot (F–P) cavity with a linewidth of \n \n\t\n\t ∼\n\t\n\t1.83\n\t\n\t\n\t M\n\t H\n\t z\n\t\n \n and a finesse of \n \n\t\n\t ∼\n\t\n\t136\n \n is employed to measure a 1560.5 nm distributed-feedback (DFB)-type diode laser’s linewidth. With an increase of the white noise intensity, the laser linewidth is broadened from \n \n\t\n\t ∼\n\t\n\t\n\t 2\n\t\n \n to \n \n\t\n\t ∼\n\t\n\t60\n\t\n\t\n\t M\n\t H\n\t z\n\t\n \n gradually, and the line shape is characterized evolving from Lorentzian function to Gaussian function. At the same level of white noise intensity, the laser linewidth decreases with increase of the injection current. The accuracy of our measurements is verified based on the fiber-delayed and acousto-optic modulator (AOM)-shifted self-heterodyne scheme and the optical F–P cavity linewidth measurement method. The 1560.5 nm laser is boosted by using an erbium-doped fiber amplifier (EDFA) and is frequency doubled to 780.25 nm by a fiber-pigtailed, single-pass PPMgO:LN waveguide module, and the laser linewidth is visually observed and verified by broadening of the saturated absorption spectra of rubidium atoms. Clearly this linewidth manipulation method of diode lasers based on broadband white noise current coupling can be extended to other wavelength diode lasers and can be applied to laser measurement, laser communication, and other fields for different requirements.

韩宇晶, 严祥安, 邓琳星, .

铷原子超精细谱线的强度差异机理研究

[J]. 西北师范大学学报(自然科学版), 2021, 57(2): 41-47.

[本文引用: 1]

HAN Yujing, YAN Xiang’an, DENG Linxing, et al.

Study on intensity difference mechanism of rubidium atom hyperfine spectra

[J]. Journal of Northwest Normal University (Natural Science), 2021, 57(2): 41-47.

[本文引用: 1]

/