水滴在气流中变形破碎过程的数值模拟研究
Numerical Study of Deformation and Breakup Processes of Water Droplets in Air Flow
通讯作者: 金哲岩,副教授,博士生导师,电话(Tel.):021-65982651;E-mail:zheyanjin@tongji.edu.cn.
责任编辑: 王一凡
收稿日期: 2022-10-20 修回日期: 2023-03-6 接受日期: 2023-03-24
基金资助: |
|
Received: 2022-10-20 Revised: 2023-03-6 Accepted: 2023-03-24
作者简介 About authors
桑旭(2000-),硕士生,从事飞行器结冰机理研究.
针对水滴在结冰风洞实验中加速过程内易发生破碎而导致试验段内水滴粒径分布难以符合结冰气象条件的问题,利用流体体积(VOF)方法,模拟了直径为100、200、400、600、800、1 000 μm 以及 1 200 μm 的水滴在不同气流速度作用下(20、50、80 m/s)的变形破碎情况.结果表明:在20 m/s气流作用下,直径为600 μm的水滴不发生破碎;当风速为50 m/s时,直径为100 μm的水滴不发生破碎;随着韦伯数增加,最大不稳定波波长也随之增大,水滴的破碎模式从袋状破碎变为包-蕊状破碎,随后转变为蕊-层状破碎,进一步转变为剪切破碎.水滴的破碎形式包括袋状破碎、包-蕊状破碎、蕊-层状破碎及剪切破碎,会对面积最大的液滴与初始液滴面积之比有较大影响.在初始水滴直径相同的条件下,入口速度越大,破碎后的面积比越大.
关键词:
Aimed at the problem that water droplets are easy to break up during the acceleration process in icing wind tunnel experiment, which makes it difficult for the particle size distribution of water droplets in the test section to conform to the icing weather conditions, the deformation and breakup regime of water droplets with a diameter of 100, 200, 400, 600, 800, 1 000 and 1 200 μm under the action of different air velocities(20, 50, and 80 m/s) are simulated by using the volume of fluid (VOF) method. The results show that under the action of 20 m/s air flow, the water droplet with a diameter of 600 μm does not break. Under the action of 50 m/s air flow, the water droplet with a diameter of 100 μm does not break. With the increase of Weber number, the wavelength of the most destructive wave also increases, and the breakup regime of water droplets changes from bag breakup to bag-plume breakup, to plume-shear breakup, and to shear breakup successively. The droplet breakup regime, including the bag breakup, bag/plume breakup, the plume/sheet-thinning breakup, and the shear breakup, has a significant effect on the ratio of the area of the largest droplet to the initial droplet. Under the condition that the initial drop diameter is the same, as the inlet velocity increases, the area ratio after breakup increases.
Keywords:
本文引用格式
桑旭, 金哲岩, 杨志刚, 余放.
SANG Xu, JIN Zheyan, YANG Zhigang, YU Fang.
此外,在数值模拟方面,学者们致力于研究参数变化导致液滴破碎模式不同的原因[17⇓⇓⇓-21],数值模拟在调整参数及流场可视化方面具有便利性.楼建峰等[17]利用流体体积(VOF)方法和标准k-ε湍流模型对直径为1.2 mm的液滴在气流中的破碎进行模拟,发现韦伯数We对液滴变形破碎起促进作用,奥内佐格数Oh和液气密度比起阻碍抑制作用.Jain等[18]对流场中的液滴建立二维轴对称模型,发现在中等We(20~120)条件下液气密度比对液滴的变形破碎影响较大,证明了在高液气密度比(>150)条件下R-T不稳定性的确是导致袋状破碎的原因.樊玉光等[20]采用CLSVOF方法进行模拟,发现在同一We条件下,液化天然气液滴的破碎时间随初始直径的增大而减小后趋于平缓,初始直径为400 μm时,液滴发生剪切破碎的临界We在80左右.
综上所述,目前国内外对冰风洞内水滴参数的研究均基于球形液滴假设,并没有考虑水滴的变形破碎效应,即没有考虑水滴变形破碎后导致风洞试验段内水滴的MVD变化,影响风洞实验人员对喷雾系统的调整,导致错误的结冰输入参数.针对液滴变形破碎的研究,学者们对直径在100~1 200 μm 水滴的研究结果较少,且没有对水滴破碎后的面积变化进行统计.由于风洞试验段内水滴粒径分布要求的特殊性,水滴在风洞加速段内的破碎会导致试验段内的粒径分布变化,导致无法利用该破碎结果来指导风洞实验参数的调整,进而难以得到符合云雾参数的试验段数据.因此,研究云雾模拟条件中主要粒径分布的水滴的破碎情况以及破碎后的面积变化对于指导风洞实验参数调整具有重要意义.
与文献中的数值模拟相比,本文全面系统地分析了100~1 200 μm直径范围内水滴在20、50、80 m/s 入口速度条件下的变形破碎情况.根据SLD粒径的主要分布范围探究不同直径的水滴发生破碎的条件,并对不同直径水滴的破碎结果进行分析,包括流场情况以及破碎后的面积比,为风洞实验参数调整提供了宝贵的参考数据.
1 物理模型与数值方法
针对水滴在空气流场中的变形破碎模拟,建立了如图1所示的计算模型.边界条件如下:左侧为速度入口,右侧为压力出口,上侧为壁面,下侧为对称边界(本文经过多次模拟验证,不影响水滴的变形和破碎情况).经过模拟验证,需要将水滴中心位置距离入口6d (d为水滴初始直径),距离壁面10d以确保不受入口边界和壁面的影响.在网格设置方面,在距离对称边界3d的范围内进行局部加密,网格大小h=0.02d.
图1
在下文研究结果中,时间t*以无量纲形式[20]呈现,表示为
式中:Ug为气流入口速度(速度尺度);t为气流流动时间(时间尺度);ρl为水的密度;ρg为空气的密度.
2 网格收敛性与模型有效性验证
图2
图3
3 结果与讨论
随着We的增加,液滴的破碎模式可以分为振荡变形(破碎)、袋状破碎、多模式破碎、剪切破碎和灾难性破碎[27].本文主要模拟了直径为100、200、400、600、800、1 000、1 200 μm大小的水滴在不同气流速度(20、50、80 m/s)作用下的变形破碎情况.
3.1 入口风速为20 m/s条件下的变形及破碎结果
图4
图4
入口风速为20 m/s,直径为1 200 μm,We = 8.05时的水滴变形破碎情况
Fig.4
Deformation and breakup of water droplets at an inlet velocity of 20 m/s, a diameter of 1 200 μm, and We=8.05
图5
图5
入口风速为20 m/s,直径为1 000 μm,We=6.70时的水滴变形破碎情况
Fig.5
Deformation and breakup of water droplets at an inlet velocity of 20 m/s, a diameter of 1 000 μm, and We=6.70
图6
图6
入口风速为20 m/s,直径为600 μm,We=4.03时的水滴变形破碎情况
Fig.6
Deformation and breakup of water droplets at an inlet velocity of 20 m/s, a diameter of 600 μm, and We=4.03
3.2 入口风速为50 m/s条件下的变形及破碎结果
水滴破碎具有多模式破碎的特征,多模式破碎通过水滴边缘特征又可以区分为包-蕊状破碎和蕊-层状破碎[30].如图7~11所示,当风速为50 m/s、水滴直径为 1 200 μm时,水滴边缘几乎没有袋状结构形成,属于蕊-层状破碎.当水滴直径为800 μm时,与前者不同的是在水滴边缘处形成了明显的袋状结构,液滴两侧的边缘部位呈现出袋状的形式,并且袋状部分慢慢变薄,直至破裂,属于包-蕊状破碎.与前者的相同点在于,液滴的中心部分明显向上游突起(向左侧突起),形成一个较大的液核,且水滴初始直径越大,形成的液核越大.当水滴直径为400 μm时,破碎形式同样为包-蕊状破碎,水滴两侧形成的袋状结构更为明显.多模式破碎的模拟结果与Zhao等[28]的实验结果相符较好.当水滴直径为200 μm时,水滴的破碎形式转换为袋状破碎.当水滴直径为100 μm时,水滴发生振荡变形不发生破碎.
图7
图7
入口风速为50 m/s,直径为1200 μm,We = 50.34 时的水滴变形破碎情况
Fig.7
Deformation and breakup of water droplets at an inlet velocity of 50 m/s, a diameter of 1 200 μm, and We=50.34
图8
图8
入口风速为50 m/s,直径为800 μm,We=33.56 时的水滴变形破碎情况
Fig.8
Deformation and breakup of water droplets at an inlet velocity of 50 m/s, a diameter of 800 μm, and We=33.56
图9
图9
入口风速为50 m/s,直径为400 μm,We=16.78 时的水滴变形破碎情况
Fig.9
Deformation and breakup of water droplets at an inlet velocity of 50 m/s, a diameter of 400 μm, and We=16.78
图10
图10
入口风速为50 m/s,直径为200 μm,We=8.39 时的水滴变形破碎情况
Fig.10
Deformation and breakup of water droplets at an inlet velocity of 50 m/s, a diameter of 200 μm, and We=8.39
图11
图11
入口风速为50 m/s,直径为100 μm,We=4.19 时的水滴变形破碎情况
Fig.11
Deformation and breakup of water droplets at an inlet velocity is 50 m/s, a diameter of 100 μm, and We=4.19
3.3 入口风速为80 m/s条件下的变形及破碎结果
从图12~15中可以看出,当风速为80 m/s、d=1 200 μm时,在气流速度较大的条件下,水滴两侧不断有小液滴被剥离出去,且刚剥离时,液核比多模式破碎更大,符合剪切破碎的特征.在小水滴被剥离出去的过程中,液核逐渐被气流压扁,水滴边缘部分形成很小的袋状膜,袋状膜逐渐变薄直至破碎,袋状膜破碎后,袋膜处的小液滴不断被剥离出去.剪切破碎的模拟结果与Xu等[16]的实验结果相符较好.与蕊-层状破碎相比,剪切破碎在初期水分向边缘移动时几乎没有汇聚过程,由于水滴边缘气流速度较大,移动到液滴边缘的水滴直接被剥离出去,这是可以区分剪切破碎与蕊-层状破碎的方法.当d=600 μm 时,水滴的破碎方式转换为蕊-层状破碎.当d=200 μm时,水滴的破碎方式变为包-蕊状破碎.当d=100 μm时,水滴的破碎方式变为袋状破碎.
图12
图12
入口风速为80 m/s,直径为 1 200 μm,We = 128.88 时的水滴变形破碎情况
Fig.12
Deformation and breakup of water droplets at an inlet velocity of 80 m/s, a diameter of 1 200 μm,and We=128.88
图13
图13
入口风速为80 m/s,直径600 μm,We=64.44 时的水滴变形破碎情况
Fig.13
Deformation and breakup of water droplets at an inlet velocity of 80 m/s, a diameter of 600 μm, and We=64.44
图14
图14
入口风速为80 m/s,直径200 μm,We=21.48 时的水滴变形破碎情况
Fig.14
Deformation and breakup of water droplets at an inlet velocity of 80 m/s, a diameter of 200 μm, and We=21.48
图15
图15
入口风速为80 m/s,直径100 μm,We=10.74 时的水滴变形破碎情况
Fig.15
Deformation and breakup of water droplets at an inlet velocity of 80 m/s, a diameter of 100 μm, and We=10.74
3.4 表面波对具体分裂模式的影响
在对液滴分裂模式的研究中,表面波是一个重要的物理量.当气流吹向水滴表面时,水滴迎风面在气体压力的作用下会产生表面波.Theofanous等[31]根据R-T不稳定性理论,提出了最大不稳定波长λmax与水滴最大直径dmax的关系:
式中:CD为液滴的阻力系数,CD/CD-s=1+2.632y,CD-s为圆柱绕流的阻力系数,y=1-(d/dmax)2 [32].该式假设初始时刻的液滴在外部气流的作用下被压扁成为一个直径为dmax的圆盘.
当Oh<0.1时,由Hsiang等[33]根据实验得到的经验公式:
将式(3)代入式(2)中即可得到最大不稳定波长λmax与We的关系.根据实验以及数值结果,当Re较小时(Re<5 000),CD-s取值0.4[30].
图16
图16
水滴破碎模式与表面波的关系
Fig.16
Relationship between water droplets breakup modes and surface wave
表1 破碎模式与We以及表面波波长的关系
Tab.1
破碎模式 | We | dcro/λmax |
---|---|---|
袋状破碎 | 5~16 | 0.3~1 |
包-蕊状破碎 | 16~50 | 1~3 |
蕊-层状破碎 | 50~85 | 3~6 |
剪切破碎 | >85 | >6 |
3.5 不同入口速度条件下水滴初次破碎后的结果统计
对水滴初次破碎后的主液滴(面积最大的液滴)面积S和球形水滴初始面积S0进行统计,得到面积比S/S0与水滴直径d的关系,如图17所示.当入口速度为20 m/s时,水滴在600 μm直径条件下不发生破碎,在800、1 000 和1 200 μm直径条件下均表现出袋状破碎,袋状破碎由于其破碎形式的特殊性,没有位于中部的母液滴,只有居于两侧的子液滴,所以面积比小于0.5,且随着水滴直径增大,初次破碎后的主液滴与初始液滴面积之比减小;当入口速度为50 m/s时,水滴在100 μm直径条件下不发生破碎,在200 μm直径条件下发生袋状破碎,在400、600、800 μm直径条件下发生包-蕊状破碎,在1 000、1 200 μm直径条件下发生蕊-层状破碎,蕊-层状破碎后的面积比整体大于包-蕊状破碎,且随着直径的增大,面积比略微增大;当入口速度为80 m/s时,水滴在100 μm直径条件下发生袋状破碎,在200 μm直径条件下发生包-蕊状破碎,在400、600 μm 直径条件下发生蕊-层状破碎,在800、1 000、1 200 μm直径条件下发生剪切破碎,4种破碎模式下的面积比呈现出如下规律:
S/S0(剪切破碎)>S/S0(蕊-层状破碎)>S/S0(包-蕊状破碎)>S/S0(袋状破碎)
以水滴破碎为前提,在相同直径条件下,入口速度越大,破碎后的面积比越大.以 1 200 μm直径的水滴为例,当Ug=20 m/s时,S/S0=0.229;当 Ug=50 m/s时,S/S0=0.888;当Ug=80 m/s时,S/S0=0.982.
图17
图17
水滴初次破碎后的面积比与水滴直径的关系
Fig.17
Relationship between the area ratio of water droplets after initial crushing and the diameter of water droplets
4 结论
本文主要分析了在常用低速风洞条件下可能产生的3种主要破碎模式,为袋状破碎、多模式破碎以及剪切破碎,指出了3种不同破碎模式的区别与联系.通过对水滴的表面波和We的量化分析,得到了二者与破碎模式之间的关系.得出的主要结论如下:
(1) 在相同气流速度条件下,不同直径水滴的破碎模式不同.随着水滴直径减小,We值减小.在 20 m/s 气流作用下,直径为600 μm的水滴不发生破碎;当风速为50 m/s时,直径为100 μm的水滴不发生破碎.
(2) 多模式破碎可以分为包-蕊状破碎和蕊-层状破碎,二者的区别在于包-蕊状破碎在水滴两侧会形成较为明显的袋状结构,而蕊-层状破碎两侧则没有明显的袋状结构,在剪切力的作用下小水滴被逐渐剥离出去,且发生蕊-层状破碎的水滴在中部形成的液核比包-蕊状破碎形成的液核占比更大.
(3) 随着We增加,水滴垂直于气流流向的直径与最大不稳定表面波波长的比值增大,最大不稳定表面波波长逐渐减小.水滴的破碎形式会对水滴破碎后形成的最大液滴的面积与初始液滴的面积之比有较大影响.在初始水滴直径相同的条件下,入口速度越大,破碎后的面积比越大.
受模拟计算方法及其他条件的限制,针对水滴破碎后小水滴(除母液滴之外)的等效直径、速度等参数有待进一步统计.
参考文献
美国NASA结冰试验设备体系综述
[J]. ,
Review on the system of icing facilities in NASA
[J]. ,
结冰风洞过冷大水滴结冰条件模拟能力综述
[J]. ,
An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels
[J]. ,
结冰风洞过冷大水滴粒径测量初步研究
[J]. ,
Preliminary reasearch on size measurement of supercooled large droplet in icing wind tunnel
[J]. ,
飞机过冷大水滴结冰气象条件运行设计挑战
[J]. ,
The challenge of aircraft design under operational conditions of supercooled large water droplets icing
[J]. ,
结冰风洞液滴运动及传质传热特性分析
[J]. ,
Analysis of water droplet movement and heat/mass transfer in an icing wind tunnel
[J]. ,
冰风洞内水滴参数沿程变化的数值模拟
[J]. ,
Numerical simulation of water droplet parameters variation along the icing wind tunnel
[J]. ,
结冰风洞中液滴相变效应数值模拟
[J]. ,
Numerical investigation of phase transition effects of droplet in icing wind tunnel
[J]. ,
Bimodal SLD ice accretion on swept NACA 0012 airfoil models: AIAA 2020-2814
[R]. ,
结冰风洞中SLD模拟方法及其实验验证研究
[C]// .
The SLD simulation method and experiment study of icing wind tunnel
[C]// .
高韦伯数下煤油液滴的破碎机理研究
[J]. ,
Breakup of a kerosene droplet at high Weber numbers
[J]. ,
单液滴羽状/液膜稀释破碎特性研究
[J]. ,
Experimental investigations of breakup characteristic of single droplet in plume/sheet-thinning breakup regime in airflow
[J]. ,
Effect of turbulence on drop breakup in counter air flow
[J]. ,DOI:10.1016/j.ijmultiphaseflow.2019.103108 URL [本文引用: 1]
Droplet breakup in airflow with strong shear effect
[J]. ,DOI:10.1017/jfm.2022.326 URL [本文引用: 2]
The deformation and breakup of droplets in airflows is important in spray and atomisation processes, but the shear effect in non-uniform airflow is rarely reported. In this study, the deformation and breakup of droplets in a shear flow of air is investigated experimentally using high-speed imaging, digital image processing and particle image velocimetry. The results show that in airflow with a strong shear effect, the droplet breakup exhibits unique features due to the uplift and stretching produced by the interaction between the deformed droplet and the shear layer. The breakup process can be divided into three stages according to the droplet morphology and the breakup mechanism, namely the sheet breakup, the swing breakup and the rim breakup stages. Theoretical analysis reveals that the swing breakup is governed by the transverse Rayleigh–Taylor instability. A regime map of the droplet breakup is produced, and the transitions between different regimes are obtained theoretically. The stretching liquid film during the droplet deformation and the fragment size distribution after droplet breakup are analysed quantitatively, and the results show that they are determined by the competition of breakup at different stages affected by the shear. Finally, the effect of the droplet viscosity is investigated, and the viscosity inhibits the droplet breakup in a strong shear airflow.
液滴在气体介质中剪切破碎的数值模拟研究
[J]. ,
Numerical study on shearing breakup of liquid droplet in gas medium
[J]. ,
Secondary breakup of drops at moderate Weber numbers: Effect of density ratio and Reynolds number
[J]. ,DOI:10.1016/j.ijmultiphaseflow.2019.04.026 URL [本文引用: 2]
Computer simulations of drop deformation and drop breakup
[C]// .
气流中液化天然气液滴破碎数值模拟研究
[J]. ,DOI:10.3969/j.issn.1000-8144.2021.03.004 [本文引用: 3]
基于流体体积法和k-ε湍流模型对液化天然气单液滴在气流中的变形破碎情况进行模拟研究。研究不同We对液滴形态和破碎模式的影响,分析液滴形态变化过程中速度、加速度和阻力系数随时间的变化趋势,并研究不同流场下液滴变形破碎情况。结果表明,不同的We下,液滴呈现出不同的破碎模式,液滴发生剪切破碎的临界We为80左右,同一We下不同直径的液滴临界破碎时间有所不同;随着气液相对速度的We的增大,液滴的无量纲变形时间先递减后趋向于平缓;液滴变形破碎过程中,速度随着时间的延长而增加,加速度和阻力系数随着时间的延长先增后减;与普通流场相比,带挡板的流场中液滴变形破碎时间明显缩短。
Numerical simulation of liquid natural gas droplet breakup in gas phase flow
[J]. ,DOI:10.3969/j.issn.1000-8144.2021.03.004 [本文引用: 3]
The deformation and breakup of a single liquified natural gas droplet is simulated in gas phase flow by using the volume of fluid method and k-ε turbulence model. The influence of We on droplet morphology and breakup mode was investigated,and the change tendencies of velocity,acceleration and drag coefficient with time during the process of droplet morphology change were studied. In addition,the droplet deformation and breakup in different flow fields were compared. The results indicate that the droplet shows different breakup modes in different We. The critical We of shear breakup is about 80,and the critical breakup time of different droplet diameter is different under the same We. With the increase in We at relative gas-liquid velocity,the curve of dimensionless deformation time of droplet decreases firstly and then tends to be flat. In the process of droplet deformation and breakup,the velocity keeps increasing,while the acceleration and drag coefficient increase firstly and then decrease with the increase in time. Compared with the original flow field,the deformation and breaking time of droplets in the flow field with baffle plates are significantly reduced.
Deformation and acceleration of water droplet in continuous airflow
[J]. ,
Cell alternation algorithm for simulating bubble growth in boiling flows through volume of fluid (VOF) method in fluent
[J]. ,DOI:10.1016/j.aej.2022.06.059 URL [本文引用: 1]
液滴变形-袋式-多模式破碎转换研究
[J]. ,
Investigation on transtions of deformation-bag-multimode breakup for liquid droplets
[J]. ,
液滴在连续气流作用下的变形与破碎
[J]. ,
Droplet deformation and breakup in a continuous gas flow
[J]. ,
Transition Weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization
[J]. ,DOI:10.1016/j.fuel.2018.02.119 URL [本文引用: 2]
基于VOF方法的大水滴袋状破碎的仿真研究
[J]. ,
Numerical simulation of large droplets in bag breakup regime based on VOF method
[J]. ,
液滴二次雾化破碎模式数值模拟
[J]. ,DOI:10.15959/j.cnki.0254-0053.2015.04.003 [本文引用: 2]
在许多现代工程领域中,二次雾化对于增强液体雾化以及提高混合率都起到了关键的作用.基于SIMPLE方法对这个问题进行了数值模拟,VOF方法与Level-Set方法耦合捕捉界面,自适应网格的运用平衡了对提高计算精度以及降低计算成本两方面的要求.在Oh数较低(Oh < 0.1)的情况下,通过数值模拟得到了四种典型的液滴分裂模式,并且对其中相对复杂的第二第三种分裂模式进行了详细的分析与比较.得出了该模式形成的条件与相关特性.最后,将以上结果与前人的实验结果作了对比,在大多数重要特征方面,两者有非常好的一致性.
Numerical simulation of droplet breakup regimes in secondary atomization
[J]. ,DOI:10.15959/j.cnki.0254-0053.2015.04.003 [本文引用: 2]
The secondary atomization plays a key role in increasing both evaporation and mixing rates in a variety of engineering applications. The phenomenon was studied by numerical simulation based on SIMPLE scheme. The VOF method, coupled with the Level-Set method, was used to capture the boundary; the adaptive mesh strategy was taken to balance the demands for raising accuracy of calculation and for reducing computational expenditures. In the case of low Oh number, when Oh < 0.1, four typical regimes of droplet breakup are observed in the simulation; and the comparatively more complicated the second and the third modes had undergone detailed analysis and comparison. The condition for the occurance of these modes and the pertinent features were obtained. Finally, comparison between these results and those of past experiments were made; in most part of significant aspects the two have very good agreement.
Aerobreakup in rarefied supersonic gas flows
[J]. ,DOI:10.1115/1.1777234 URL [本文引用: 1]
We present new experimental results on the interfacial instabilities and breakup of Newtonian liquid drops suddenly exposed to rarefied, high-speed (Mach 3) air flows. The experimental approach allows for the first time detailed observation of interfacial phenomena and mixing throughout the breakup cycle over a wide range of Weber numbers. Key findings are that Rayleigh-Taylor instability alone is the active mechanism for freestream Weber numbers as low as 28 for low viscosity liquids and that stripping rather than piercing is the asymptotic regime as We→∞. This and other detailed visual evidence over 26<We<2,600 are uniquely suitable for testing Computational Fluid Dynamics (CFD) simulations on the way to basic understanding of aerobreakup over a broad range of conditions.
Near-limit drop deformation and secondary breakup
[J]. ,DOI:10.1016/0301-9322(92)90036-G URL [本文引用: 1]
Secondary atomization
[J]. ,DOI:10.1007/s00348-008-0593-2 URL [本文引用: 1]
/
〈 | 〉 |