上海交通大学学报, 2024, 58(2): 147-155 doi: 10.16183/j.cnki.jsjtu.2022.404

船舶海洋与建筑工程

船型网箱运动-波浪场扰动-网衣受力耦合动力响应特性

王益厚1, 付世晓,1, 许玉旺1, 李帅1, 傅强2, 刘富祥3

1.上海交通大学 海洋工程国家重点实验室, 上海 200240

2.烟台中集来福士海洋工程有限公司, 山东 烟台 264035

3.烟台中集蓝海洋科技有限公司, 山东 烟台 264035

Dynamic Response of a Vessel-Shaped Fish Cage Considering Coupling Effect Among Body Motion, Disturbed Velocity Field, and Net Loads

WANG Yihou1, FU Shixiao,1, XU Yuwang1, LI Shuai1, FU Qiang2, LIU Fuxiang3

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Yantai CIMC Raffles Offshore Limited, Yantai 264035, Shandong, China

3. Yantai CIMC Blue Ocean Technology Co., Ltd., Yantai 264035, Shandong, China

通讯作者: 付世晓,教授,博士生导师,电话(Tel.):021-34207053;E-mail:shixiao.fu@sjtu.edu.cn.

责任编辑: 王一凡

收稿日期: 2022-10-17   修回日期: 2022-11-28   接受日期: 2022-12-5  

基金资助: 国家杰出青年科学基金(51825903)
国家自然科学基金基础科学中心项目(52088102)
山东省重点研发计划项目(2021SFGC0701)

Received: 2022-10-17   Revised: 2022-11-28   Accepted: 2022-12-5  

作者简介 About authors

王益厚(1994-),博士生,从事深远海养殖装备研究.

摘要

船型网箱是一种由大型浮体、钢架、网衣系统及系泊系统构成的新型海洋养殖结构.大型浮体在波浪中产生的绕射和辐射作用会对波浪场产生扰动,进而改变网衣受力,这种相互作用此前还未被研究过.本文基于势流理论求得绕射波和辐射波在网衣周围波浪场的速度传递函数,同时采用莫里森方程求解计及波浪场扰动的网衣水动力载荷;对网衣水动力载荷与浮体运动不断迭代计算,实现计及网箱运动-波浪场扰动-网衣受力耦合效应的船型网箱动力响应分析;最后,研究了不同幅值的规则波下这种耦合效应对网箱运动、网衣张力、容积损失和连接器载荷的影响规律.结果发现: 波浪场扰动对网箱运动和容积损失的影响不明显,但是会导致网衣张力和连接器载荷明显增大,这能够为船型网箱的结构强度校核及安全设计提供指导.

关键词: 船型网箱; 绕射波和辐射波; 网箱运动; 网衣张力; 容积损失; 连接器载荷

Abstract

Vessel-shaped fish cages are a new type of large aquaculture structure consisting of a floating body, steel frames, net system, and mooring system. The diffraction and radiation waves induced by the floating body can disturb the velocity field and induce additional changes to the hydrodynamic loads on the nets. In this paper, the velocity transfer functions around the nets induced by the diffraction and radiation waves are obtained and the effects of floating body on the forces of the nets are calculated by the Morison equation. By performing the iterations between the motion of floating body and loads on the nets, the fully coupled dynamic response of motion-disturbing velocity field-net loads is realized. Finally, the effects of diffraction and radiation waves on motion response, tension in the net twine, volume reduction, and connector loads are investigated. The results show that the influences of disturbing velocity field on cage motion response and volume reduction are not obvious, but they can lead to a significant increase in the tension in net twine and connector loads, which can provide helpful reference for the structural strength analysis and safety design of vessel-shaped fish cages.

Keywords: vessel-shaped fish cage; diffraction and radiation waves; cage motion; tension in net twine; volume reduction; connector load

PDF (10409KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王益厚, 付世晓, 许玉旺, 李帅, 傅强, 刘富祥. 船型网箱运动-波浪场扰动-网衣受力耦合动力响应特性[J]. 上海交通大学学报, 2024, 58(2): 147-155 doi:10.16183/j.cnki.jsjtu.2022.404

WANG Yihou, FU Shixiao, XU Yuwang, LI Shuai, FU Qiang, LIU Fuxiang. Dynamic Response of a Vessel-Shaped Fish Cage Considering Coupling Effect Among Body Motion, Disturbed Velocity Field, and Net Loads[J]. Journal of Shanghai Jiaotong University, 2024, 58(2): 147-155 doi:10.16183/j.cnki.jsjtu.2022.404

在过去数十年,重力式网箱在国内外的近海海域被广泛推广应用,其主要由浮圈和柔性网衣结构组成,学者针对其水动力载荷特性和结构响应特性开展了大量研究[1-8].由于浮圈和柔性网衣结构均为细长构件,所以其水动力载荷可通过莫里森方程求解[9-10];同时,在计算网衣水动力载荷时,一般假定其仅受到入射波作用,浮圈等构件对波浪场的扰动基本上可以忽略.

然而,随着近海渔业养殖的饱和,海岸生态环境遭到严重破坏,同时也导致鱼病频发、养殖鱼类品质日渐下降[11].为恢复近海生态,提高养殖鱼类质量,海洋养殖近年来逐渐向开放海域发展[9,12],养殖装备也日渐大型化[13],以抵抗更为严峻的外海极端恶劣环境条件[9,14 -17].其中,船型网箱是一种近年出现的新型养殖结构,主要由大型钢制主体结构、网衣系统和单点系泊系统构成[18-19].

通过网箱模型试验,Huang等[20]分析了系泊布置、波流工况和吃水对船型网箱系泊载荷和运动响应的影响,并研究了网箱内外流场速度的分布特征;此外,Huang等[20]还通过现场试验证明了养殖鱼类对船型网箱具有良好的适应性.Li等[21-23]基于势流理论计算了船型网箱浮体的水动力载荷,分析了是否考虑网衣变形对网箱水平运动和系泊载荷的影响,并针对船型网箱的单点系泊系统开展了系统性的优化设计方法研究.在结构强度分析方面,Ottersen[24]建立船型网箱钢结构局部舱段有限元模型,忽略网衣载荷的影响,基于准静态法分析了迎浪工况下局部舱段截面上法向应力和切应力的分布特征.在上述研究中,船型网箱浮体和网衣的水动力载荷均是相互独立计算的[18,25].然而,船型网箱的浮体由于尺度较大,其在波浪中会对入射波浪场造成扰动,从而导致作用于网衣等细长结构的水动力载荷发生改变,而这些改变也会反过来影响浮体的运动.目前尚无学者针对这种耦合效应开展研究.

本文计及船型网箱运动-波浪场扰动-网衣受力之间的耦合效应,建立船型网箱全耦合运动模型,利用莫里森方程计算扰动后波浪场作用在网衣上的水动力载荷,在时域内不断迭代船型网箱耦合运动方程,直至网箱运动和网衣水动力载荷达到平衡.最后分析了绕射波和辐射波对船型网箱运动响应、网线张力、容积损失和连接器载荷的影响规律.

1 船型网箱数值模型

本文中船型网箱主要由主体钢结构和网衣系统构成.如图1所示,主体钢结构包括浮体和钢架两部分.图中的主要参数[21]表1所示.网衣系统包括6个养殖单元和多个连接器,其中养殖单元沿浮体长度方向布置,连接器用于养殖单元与钢架间的连接.单个养殖单元的养殖容积达到5.4×104 m3,底部通过重块保持养殖容积.网箱作业水深为120 m.全局坐标系OxyzOxy平面与静水面重合,坐标原点位于浮体的艏部中心.

图1

图1   船型网箱模型

Fig.1   Model of vessel-shaped fish cage


表1   船型网箱主要参数

Tab.1  Main parameters of vessel-shaped fish cage

参数取值
浮体长度,LF/m385
浮体型宽,BF/m60
浮体高度/吃水,TF/m20
养殖单元边长,Bn/m45
侧网高度,Hn1/m20
底网高度,Hn2/m20
网衣密实度0.19
连接器数量120

新窗口打开| 下载CSV


2 理论背景

2.1 浮体运动方程

浮体频域运动方程[26]可以表示为

$ \begin{array}{l} {\left[-\omega^{2}\left(\boldsymbol{M}_{\mathrm{F}}+\boldsymbol{A}(\omega)\right)-\mathrm{i} \omega \boldsymbol{C}(\omega)+\boldsymbol{K}_{\mathrm{F}}\right] \overline{\boldsymbol{u}}_{\mathrm{F}}(\omega)=} \\ \overline{\boldsymbol{F}}_{\mathrm{W}}(\omega) \end{array} $

式中:AC表示浮体的附加质量矩阵和势流阻尼矩阵;MFKF分别为浮体的质量矩阵和回复刚度矩阵;F-W是一阶波浪激励力;u-F表示浮体质心处的位移;ω表示波浪频率.由于浮体尺寸巨大,本文中忽略浮体黏性载荷[27].

规则波下,浮体在时域内的运动响应方程可以写为

$ \begin{array}{l} \left(\boldsymbol{M}_{\mathrm{F}}+\boldsymbol{A}(\omega)\right) \ddot{\boldsymbol{u}}_{\mathrm{F}}(t)+\boldsymbol{C}(\omega) \dot{\boldsymbol{u}}_{\mathrm{F}}(t)+\boldsymbol{K}_{\mathrm{F}} \boldsymbol{u}_{\mathrm{F}}(t)= \\ \quad \boldsymbol{F}_{\mathrm{W}}(t) \end{array} $

式中:FW(t)是一阶波浪激励力的时域表达;uF(t)、u·F(t)和u¨F(t)分别表示浮体质心处的位移、速度和加速度.

2.2 网衣和钢架水动力载荷

网衣和钢架水动力载荷的求解依赖于波浪场中的水质点速度.在规则波下,仅计及入射波影响的波浪场中水质点速度可以表示为

vI= v1v2v3= ζvTF1Isin(ωt+φI1)ζvTF2Isin(ωt+φI2)ζvTF3Isin(ωt+φI3)

式中:vI表示入射波产生的水质点速度;v1v2v3分别表示vIxyz方向的分量;ζ表示入射波波幅;φIk表示波面在k方向(k=1, 2, 3)的相位角;vTFI为入射波引起的速度场传递函数;运算符 | | 表示求参数的幅值;上标I表示入射波对应的参数;下标1、2、3分别表示在对应参数在xyz方向的分量.

当计及浮体扰动产生的绕射波和辐射波时,扰动后波浪场中的水质点速度可以改写为

v=vI+vD+vR=v1v2v3TvD=ζvTF1Dsin(ωt+φD1)ζvTF2Dsin(ωt+φD2)ζvTF3Dsin(ωt+φD3)vR=j=16u-RjvTF1jRsin(ωt+φR1j+ηRj)j=16u-RjvTF2jRsin(ωt+φR2j+ηRj)j=16u-RjvTF3jRsin(ωt+φR3j+ηRj)

式中:vTFkDvTFkjR(k=1, 2, 3;j = 1, 2, …, 6)分别是由绕射波、辐射波在k方向引起的速度场传递函数,DR分别表示绕射波和辐射波对应的参数;vDvR分别表示由绕射波和辐射波产生的水质点速度;u-RjηRj分别为浮体质心处第j个自由度的运动幅值和相位角;φDkφRkj分别表示绕射波和辐射波的速度传递函数在k方向与波面升高间的相位角.

假设柔性网衣仅受轴向载荷,因此网衣采用Truss单元模拟;钢架使用铁木辛哥梁单元模拟.二者均为细长结构,其水动力载荷可用莫里森方程求解:

df(t)=dfD(t)+dfI(t)dfD(t)= CD12ρdSvn(t)-uSn(t)(vn(t)-uSn(t))dfI(t)=ρCMπdS24v·n(t(-ρ(CM-1)πdS24u·Sn(t)

式中:df(t)表示结构单位长度的水动力载荷;dfD(t)和dfI(t)分别表示阻力项和惯性力项;ρ是流体密度;dS是结构直径;vn(t)和v·n(t)是垂直于结构的水质点速度和加速度分量;uSnu·Sn分别是结构与vn(t)和v·n(t)同向的运动速度和加速度分量;CDCM分别为结构的阻力系数和惯性力系数.本文中圆形截面和矩形截面钢架的阻力系数分别设为1和2,惯性力系数设为2[28].

2.3 船型网箱耦合运动响应

对刚性浮体和对应的钢架节点设置主-从约束,然后利用连接器将钢架与养殖单元相连,构建船型网箱耦合运动模型.船型网箱的耦合运动方程可以写为

(MF+A(ω))u¨F(t)+C(ω)u·F(t)+KFuF(t)=  FW(t)+FCpl(t)FCpl(t)=FH(t)+FG(t)+FB(t)-FI(t)

式中:FCpl(t)表示网衣和钢架对浮体产生的耦合载荷项;FH(t)、FG(t)、FB(t)和FI(t)分别表示网衣和钢架的水动力载荷、重力、浮力和惯性力载荷在浮体质心处的积分项.

通过求解耦合运动方程,得到浮体的运动幅值,然后代入式(4)求解扰动后波浪场中水质点速度,不断迭代网箱运动与网衣和钢架的水动力载荷,最终使二者达到平衡.

2.4 数值分析流程

在船型网箱耦合运动模型中,网衣和钢架的水动力载荷使用莫里森方程求解,然后不断迭代网箱运动与网衣和钢架的水动力载荷,得到平衡结果.使用软件Abaqus进行耦合动力计算,详细流程如图2所示.

图2

图2   船型网箱动力响应分析流程图

Fig.2   Analysis flowchart of dynamic response of vessel-shaped fish cage


3 结果分析

分析了绕射波和辐射波对网箱运动、网衣张力、容积损失和连接器载荷的影响,所用工况浪向均为180°,波长与网箱浮体长度相等.

3.1 网箱运动分析

图3是船型网箱浮体质心处不同自由度的运动幅值.随着波幅的增加,各自由度的运动幅值均随之增大.但是当计及绕射波和辐射波的影响时,运动幅值与仅计及入射波作用时的结果几乎相同, 其中纵荡、垂荡和纵摇的最大变化幅度仅分别为1.0%、0.8%和2.4%,这是由于绕射波和辐射波对网衣的水动力载荷整体影响并不显著[7].

图3

图3   不同波幅下的网箱运动响应

Fig.3   Motion amplitude of cage at different wave amplitudes


3.2 网衣张力分析

由于沿x轴布置的6个养殖单元所处的波浪场相似[7],所以仅对靠近网箱艏部的养殖单元进行分析.图4所示,单个养殖单元分为8个网面,分别命名为P1~P8.

图4

图4   养殖单元的网面

Fig.4   Net panels of an aquaculture net


图5是养殖单元在8 m波幅下的最大网衣张力云图.在180°浪向下,网面P1和P3的网线张力水平较高,其中网面边缘位置的网线由于连接器限制,其张力最大(区域1、区域2).图6是不同波幅下最大张力区域的网线张力.随着波幅的增加,绕射波和辐射波对网线张力的影响也随之增大.其中,区域1的张力增幅由38%增加至64%,区域2的张力增幅由19%增加至41%.因此,在网衣的局部强度校核中需要计及绕射波和辐射波的影响.

图5

图5   网衣张力云图

Fig.5   Contour of net tension


图6

图6   不同波幅下的最大网线张力

Fig.6   Maximum tension at different wave amplitudes


3.3 容积损失分析

在波浪中,养殖单元在一定程度上会出现养殖容积降低的现象,这部分损失的养殖容积称为容积损失.图7是波幅为8 m时不同时刻的养殖单元变形云图.由图可知,无论是否计及绕射波和辐射波的影响,侧网围成的养殖容积不会发生显著的变化,而底网会出现较大的变形.这是由于连接器布置于侧网边缘,有效地限制了网衣柔性变形,减小了容积损失,而底网仅由5 t重块提供张紧力,难以维持底网的养殖容积.

图7

图7   网衣变形云图(侧视图)

Fig.7   Contour of net deformation (side view)


为进一步分析绕射波和辐射波对养殖容积的影响,图8给出不同波幅下的最大容积损失率.容积损失率是指养殖单元变形后养殖容积与变形前养殖容积之比.由图可知,随着波幅的增加,容积损失率也逐渐增大,但是整体上处于较低水平.当考虑绕射波和辐射波的影响时,最大容积损失率由12%左右增加至约13%,变化幅度很小.这是由于侧网围成的养殖容积占比高达75%,而由于连接器的限制,侧网的容积损失并不明显,所以最大容积损失率变化很小.

图8

图8   不同波幅下的容积损失率

Fig.8   Volume reduction ratio at different wave amplitudes


3.4 连接器载荷分析

图9所示,每个养殖单元对称布置20个连接器,其中位于边缘的连接器命名为C1~C4,位于中间的连接器分别命名为E1~E6.

图9

图9   连接器分布

Fig.9   Distribution of connector


图10是波幅为8 m时各个连接器的最大载荷.其中C1~C4的载荷显著高于E1~E6的载荷,这是由于边缘连接器的载荷主要源于网面P1和P3,这两个网面是养殖单元的主受力网面; 其他连接器载荷主要源于P2和P4,因此载荷较小.当计及绕射波和辐射波时,连接器的载荷增幅明显,其中C1~C4的载荷增幅分别为41%、36%、22%和39%.底部连接器的载荷较小,但是绕射波和辐射波的影响更加显著,其中E1~E3增幅尤为明显,分别增加至原载荷的4.9倍、9.2倍和5.4倍.因此,在连接器载荷强度计算中,绕射波和辐射波的影响是不可忽略的.

图10

图10   波幅8 m时各连接器最大载荷

Fig.10   Maximum loads on the connectors at a wave amplitude of 8 m


图11是不同波幅下绕射波和辐射波导致的连接器载荷增幅.随着波幅的增加,整体上连接器的载荷增幅也随之变大,这说明绕射波和辐射波在大波幅下对连接器载荷的影响更加明显.

图11

图11   不同波幅下连接器载荷增幅

Fig.11   Increase of the connector load at different wave amplitudes


4 结论

本文针对船型网箱,聚焦于当前方法无法考虑网箱绕射及辐射对网衣水动力的影响的局限性,提出了一种迭代数值分析方法,该方法能够计及网箱浮体运动、绕射及辐射扰动波浪场以及网衣水动力载荷三者耦合的影响,更加准确地计算了波浪作用下船型网箱的水动力响应和结构载荷,在网衣系统安全校核、养殖容积保持和连接器设计等方面具有重要的实际工程意义.该方法由于考虑了网箱与网衣水动力的耦合响应,其分析流程相比于当前通过解耦来处理的方法更加复杂.通过研究规则波下船型网箱绕射及辐射对其运动响应、网线张力、容积损失和连接器载荷的影响规律,主要得到以下结论:

(1) 对于船型网箱运动响应,其绕射和辐射会扰动波浪场从而影响网衣水动力载荷,进而反作用于网箱的运动,通过数值计算发现,这一影响基本上可以忽略,其中纵荡、垂荡和纵摇的最大变化幅度仅分别为1.0%、0.8%和2.4%.

(2) 对于网线张力,绕射波和辐射波对其影响最大的区域主要位于网面的边缘位置.随着波幅的增加,绕射波和辐射波导致的网线张力的最大增幅可达64%.

(3) 对于网衣容积损失,由于连接器对侧网变形的限制作用比较明显,整体上养殖容积损失率较低,绕射波和辐射波对养殖容积产生的影响很小.

(4) 在连接器载荷方面,边缘连接器载荷高于中间连接器载荷,其中边缘连接器的载荷增幅分别达到41%、36%、22%和39%.但是绕射波和辐射波对中间连接器载荷的影响更加显著,其中E1~E3增幅尤为明显,分别增加至原载荷的4.9倍、9.2倍和5.4倍.

参考文献

FREDRIKSSON D W, DECEW J C, TSUKROV I.

Development of structural modelling techniques for evaluating HDPE plastic net pens used in marine aquaculture

[J]. Ocean Engineering, 2007, 34(16): 2124-2137.

DOI:10.1016/j.oceaneng.2007.04.007      URL     [本文引用: 1]

KRISTIANSEN T, FALTINSEN O M.

Modelling of current loads on aquaculture net cages

[J]. Journal of Fluids and Structures, 2012, 34: 218-235.

DOI:10.1016/j.jfluidstructs.2012.04.001      URL     [本文引用: 1]

LØLAND G.

Current forces on, and water flow through and around, floating fish farms

[J]. Aquaculture International, 1993, 1(1): 72-89.

DOI:10.1007/BF00692665      URL     [本文引用: 1]

刘海阳, 王绍敏, 黄小华, .

深水网箱护栏力学性能分析及优化

[J]. 农业工程学报, 2017, 33(4): 248-257.

[本文引用: 1]

LIU Haiyang, WANG Shaomin, HUANG Xiaohua, et al.

Mechanical property analysis and optimization of deep-water net cage guardrail

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 248-257.

[本文引用: 1]

MOE H, OLSEN A, HOPPERSTAD O S, et al.

Tensile properties for netting materials used in aquaculture net cages

[J]. Aquacultural Engineering, 2007, 37(3): 252-265.

DOI:10.1016/j.aquaeng.2007.08.001      URL     [本文引用: 1]

张松, 庞国良, 黄小华, .

船型桁架结构网箱系泊方式优选及影响参数分析

[J]. 渔业现代化, 2022, 49(5): 97-105.

[本文引用: 1]

深远海网箱在外海作业会受到极端恶劣海况的影响,稳定有效的系泊系统对保证网箱良好的耐波特性、保障养殖效益意义重大。本研究针对一种单点系泊船型桁架结构网箱建立其水动力分析模型,通过开展相关数值计算并与物理试验结果进行对比验证该模型的准确性;在此基础上,通过分析多组波浪条件下网箱动态响应、锚链系泊张力和最小卧链长度开展了“一”字型系泊和“Y”字型系泊两种系泊方案的对比优选,在确定系泊方案后,从锚链长度和配重重量两个方面开展系泊参数分析研究。结果显示:“Y”字型系泊效果要优于“一”字型系泊;不同锚链长度及配重重量对网箱平台运动响应影响较小,但锚链长度的延长和配重重量的增加可以有效降低系泊张力峰值和延长卧链长度。本研究可为桁架结构网箱系泊分析及优化设计提供计算依据。

ZHANG Song, PANG Guoliang, HUANG Xiaohua, et al.

Optimization of mooring mode and analysis of influencing parameters for ship type truss cage

[J]. Fishery Modernization, 2022, 49(5): 97-105.

[本文引用: 1]

The operation of a deep-sea cage in the open sea is affected by extreme and severe sea conditions. An effective and reliable mooring system is the key to ensuring the excellent seakeeping of the cage and good aquaculture benefits. In this paper, the hydrodynamic numerical model of a single point mooring ship-type truss cage was established. And then the model was verified by comparison between numerical calculation results and physical experiment results. On this basis, two mooring types, &quot;&mdash;&quot; and &quot;Y&quot;, were presented and their characteristics were compared by analyzing the dynamic response of the cage, mooring tension of the anchor chain, and minimum lying length of the chain under multiple wave conditions. After that, the mooring influencing parametric analysis was implemented from two aspects: anchor chain length and weight of clump weight. The results show that the &quot;Y&quot; mooring system is better than the &quot;&mdash;&quot; mooring system and different anchor chain lengths and clump weights have little effect on the motion response of the cage, but the increase of anchor chain length and weight of clump weight can effectively reduce the peak mooring tension and extend the length of lying chain. This research can provide the basis for the mooring analysis and optimization design of truss cages.<br>

WANG Y, FU S, XU Y, et al.

Loads on a vessel-shaped fish cage steel structures, nets and connectors considering the effects of diffraction and radiation waves

[J]. Marine Structures, 2022, 86: 103301.

DOI:10.1016/j.marstruc.2022.103301      URL     [本文引用: 3]

MJÅTVEIT M A, CHENG H, ONG M C, et al.

Comparative study of circular and square gravity-based fish cages with different dimensions under pure current conditions

[J]. Aquacultural Engineering, 2022, 96: 102223.

DOI:10.1016/j.aquaeng.2021.102223      URL     [本文引用: 1]

FALTINSEN O M, SHEN Y.

Wave and current effects on floating fish farms

[J]. Journal of Marine Science and Application, 2018, 17(3): 284-296.

DOI:10.1007/s11804-018-0033-5      [本文引用: 3]

胡金鹏, 张旋.

极端海况下重力式网箱系泊系统数值模拟

[J]. 大连理工大学学报, 2021, 61(6): 615-622.

[本文引用: 1]

HU Jinpeng, ZHANG Xuan.

Numerical simulation of gravity cage mooring system under extreme sea conditions

[J]. Journal of Dalian University of Technology, 2021, 61(6): 615-622.

[本文引用: 1]

林琳, 钟仕花, 陈纯, .

近海海域养殖源微塑料的环境赋存丰度、生物积累与生态风险

[J]. 科学通报, 2022, 67(23): 2762-2781.

[本文引用: 1]

LIN Lin, ZHONG Shihua, CHEN Chun, et al.

Occurrence, bioaccumulation and ecological risk of aquaculture-derived microplastics in coastal waters

[J]. Chinese Science Bulletin, 2022, 67(23): 2762-2781.

[本文引用: 1]

鲍旭腾, 谌志新, 崔铭超, .

中国深远海养殖装备发展探议及思考

[J]. 渔业现代化, 2022, 49(5): 8-14.

[本文引用: 1]

深远海养殖是拓展水产养殖发展新空间、减轻近海生态环境压力的重要途径,对实现水产养殖提质增效、实现渔业现代化、保障世界食物安全和水产养殖业可持续发展具有重要意义,而深远海养殖装备与技术是支撑和实现深远海养殖发展壮大的关键。文章简要介绍了国内外大型桁架式养殖网箱和深远海养殖工船的研究应用现状,指出中国深远海养殖与国外渔业发达国家相比在机械装备自动化、智能化方面仍有较大差距。主要探讨了大型桁架式养殖网箱和深远海养殖工船当前面临的主要问题和未来的研究发展方向,并对未来深远海养殖的发展做了相应的探议及思考,特别是对深远海养殖装备的发展定位、功能拓展、科技支撑等进行了探索和建议。本研究以期为中国深远海养殖装备与技术研发及未来海洋建设提供参考。

BAO Xuteng, CHEN Zhixin, CUI Mingchao, et al.

Discussion and consideration of the development of deep sea aquaculture equipment in China

[J]. Fishery Modernization, 2022, 49(5): 8-14.

[本文引用: 1]

Deep sea aquaculture is an important way to expand new space for aquaculture development, and reduce the pressure on offshore ecological environment. It is of great significance to&nbsp; improve the quality and efficiency of aquaculture, to modernize fisheries, to ensure world food security and to sustainable development of aquaculture. However, the equipment and technology of deep sea aquaculture are the key to support and realize the development and growth of deep sea aquaculture. This paper briefly introduces the research and application status of deep sea aquaculture vessels and deep sea aquaculture cages, and points out that there is still a big gap between China's deep-sea aquaculture and foreign fishery developed countries in the automation and intelligence of mechanical equipment. This paper discusses the current main problems and future research and development directions of deep sea aquaculture vessels and deep sea aquaculture cages, and makes corresponding discussions and thoughts on the future development of deep sea aquaculture, especially&nbsp; planning objectives, function expansion, scientific and technological support of deep sea aquaculture. This study is expected to provide reference for the research and development of deep sea aquaculture equipment and technology and future marine construction in China.<br>

程世琪, 石建高, 袁瑞, .

中国海水网箱的产业发展现状与未来发展方向

[J]. 水产科技情报, 2022, 49(6): 369-376.

[本文引用: 1]

CHENG Shiqi, SHI Jiangao, YUAN Rui, et al.

Current situation and future development direction of marine cage in China

[J]. Fisheries Science & Technology Information, 2022, 49(6): 369-376.

[本文引用: 1]

CHU Y I, WANG C M, PARK J C, et al.

Review of cage and containment tank designs for offshore fish farming

[J]. Aquaculture, 2020, 519: 734928.

DOI:10.1016/j.aquaculture.2020.734928      URL     [本文引用: 1]

徐皓, 谌志新, 蔡计强, .

我国深远海养殖工程装备发展研究

[J]. 渔业现代化, 2016, 43(3): 1-6.

[本文引用: 1]

深远海水域拥有发展水产养殖优良的条件,包括优质的水源、适宜的区域性或洋流性水温,以及极少的陆源性污染与病害。一旦具备安全可靠的工程装备以及海上生产保障系统,对发展深远海养殖,形成&ldquo;深蓝渔业&rdquo;,具有极好的条件与深远的意义。大型养殖工船与网箱设施是发展深远海养殖工程装备的核心,也是国内外技术研发的前沿。本文在分析国内外深远海工程装备研究进展的基础上,提出了我国深远海养殖工程装备及&ldquo;深蓝渔业&rdquo;的战略构想,以及推进科技进步的重点任务建议。

XU Hao, CHEN Zhixin, CAI Jiqiang, et al.

Research on the development of deep-sea aquaculture engineering equipment in China

[J]. Fishery Modernization, 2016, 43(3): 1-6.

[本文引用: 1]

There are excellent conditions for developing aquaculture in deep sea waters including the high quality water, suitable regional or current water temperature, and very few terrigenous pollution & disease, etc.. The support of safe & reliable engineering equipment and guarantee system for marine operation is significant for developing deep sea aquaculture and realizing &quot;deep blue fishery&quot;. Large-scale fish farming ships and cages facilities are the core equipment of deep sea aquaculture engineering, and also the leading R&D technology over the world. Based on the analysis of deep sea engineering equipment research progress, this paper proposed the strategic conception and pointed out the key tasks of boosting the scientific and technological progress in China's deep sea aquaculture engineering equipment and &quot;deep blue fishery&quot;.<br>

刘碧涛, 王艺颖.

深海养殖装备现状及我国发展策略

[J]. 船舶物资与市场, 2018(2): 39-44.

[本文引用: 1]

LIU Bitao, WANG Yiying.

Status of deep-sea breeding equipment and the development strategy in China

[J]. Marine Equipment/Materials & Marketing, 2018(2): 39-44.

[本文引用: 1]

中国船检.

中国船级社为“经海”系列深远海养殖智能网箱颁发入级检验证书

[J]. 中国船检, 2021, 259(11): 82.

[本文引用: 1]

China Ship Survey.

China Classification Society issued the classification certificate for the ‘Jinghai’ series of deep-sea aquaculture intelligent cages

[J]. China Ship Survey, 2021, 259(11): 82.

[本文引用: 1]

MA C, ZHAO Y P, BI C W.

Numerical study on hydrodynamic responses of a single-point moored vessel-shaped floating aquaculture platform in waves

[J]. Aquacultural Engineering, 2022, 96: 102216.

DOI:10.1016/j.aquaeng.2021.102216      URL     [本文引用: 2]

吴元紧, 黄小华, 庞国良, .

潜浮式船型桁架结构深海养殖网箱避浪性能研究

[J]. 渔业科学进展, 2022, 43(6): 18-28.

[本文引用: 1]

WU Yuanjin, HUANG Xiaohua, PANG Guoliang, et al.

Study on wave resistance performance of a submersible deep-sea aquaculture cage with vessel-shaped truss structure

[J]. Progress in Fishery Sciences, 2022, 43(6): 18-28.

[本文引用: 1]

HUANG X, LIU H, HU Y, et al.

Hydrodynamic performance of a semi-submersible offshore fish farm with a single point mooring system in pure waves and current

[J]. Aquacultural Engineering, 2020, 90: 102075.

DOI:10.1016/j.aquaeng.2020.102075      URL     [本文引用: 2]

LI L, JIANG Z, HØILAND A V, et al.

Numerical analysis of a vessel-shaped offshore fish farm

[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(4): 041201.

DOI:10.1115/1.4039131      URL     [本文引用: 2]

The aquaculture industry is aiming to move fish farms from nearshore areas to open seas because of many attractive advantages in the open water. However, one major challenge is to design the structure to withstand the environmental loads due to wind, waves, and currents. The purpose of this paper is to study a vessel-shaped fish farm concept for open sea applications. The structure includes a vessel-shaped hull, a mooring system, and fish cages. The shape of the hull minimizes the wave loads coming from the bow, and the single-point mooring system is connected to the turret at the vessel bow. Such a system allows the whole fish farm to rotate freely about the turret, reduces the environmental loads on the structure and increases the spread area of fish wastes. A basic geometry of the vessel hull was considered and the hydrodynamic properties were obtained from the frequency-domain (FD) analysis. A mooring system with six mooring lines was designed to avoid possible interactions with the fish cages. Time-domain (TD) simulations were performed by coupling the hull with the mooring system. A simplified rigid model of the fish cages was considered. The global responses of the system and the mooring line loads were compared under various wave and current conditions. The effects due to misalignment of wave and current directions on the responses were discussed. Finally, the responses using flexible and rigid net models were compared under steady current conditions.

LI L, JIANG Z, ONG M C, et al.

Design optimization of mooring system: An application to a vessel-shaped offshore fish farm

[J]. Engineering Structures, 2019, 197: 109363.

DOI:10.1016/j.engstruct.2019.109363      URL     [本文引用: 1]

JIANG Z, HØILAND A V, ONG M C.

Numerical analysis of a vessel-shaped offshore fish farm

[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140: 041201-1.

DOI:10.1115/1.4039131      URL     [本文引用: 1]

The aquaculture industry is aiming to move fish farms from nearshore areas to open seas because of many attractive advantages in the open water. However, one major challenge is to design the structure to withstand the environmental loads due to wind, waves, and currents. The purpose of this paper is to study a vessel-shaped fish farm concept for open sea applications. The structure includes a vessel-shaped hull, a mooring system, and fish cages. The shape of the hull minimizes the wave loads coming from the bow, and the single-point mooring system is connected to the turret at the vessel bow. Such a system allows the whole fish farm to rotate freely about the turret, reduces the environmental loads on the structure and increases the spread area of fish wastes. A basic geometry of the vessel hull was considered and the hydrodynamic properties were obtained from the frequency-domain (FD) analysis. A mooring system with six mooring lines was designed to avoid possible interactions with the fish cages. Time-domain (TD) simulations were performed by coupling the hull with the mooring system. A simplified rigid model of the fish cages was considered. The global responses of the system and the mooring line loads were compared under various wave and current conditions. The effects due to misalignment of wave and current directions on the responses were discussed. Finally, the responses using flexible and rigid net models were compared under steady current conditions.

OTTERSEN P A. Structural assessment of an offshore ship-shaped fish farm[D]. Lyngby, Denmark: Technical University of Denmark, 2017.

[本文引用: 1]

崔勇, 关长涛, 秦升杰, .

波浪作用下半潜式养殖网箱水动力特性

[J]. 渔业科学进展, 2022, 43(6): 11-17.

[本文引用: 1]

CUI Yong, GUAN Changtao, QIN Shengjie, et al.

Hydrodynamic characteristics of a semisubmersible aquaculture cage under waves

[J]. Progress in Fishery Sciences, 2022, 43(6): 11-17.

[本文引用: 1]

WEI W, FU S, MOAN T, et al.

A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions

[J]. Marine Structures, 2018, 57: 180-192.

DOI:10.1016/j.marstruc.2017.10.008      URL     [本文引用: 1]

FALTINSEN O M. Sea loads on ships and offshore structures[M]. New York,USA: Cambridge University Press, 1993.

[本文引用: 1]

VERITAS N. Environmental conditions and environmental loads. Edition August 2017[S]. Oslo, Norway: Det Norske Veritas, 2017.

[本文引用: 1]

/