基于双流特征提取的车路协同感知方法
|
牛国臣, 孙翔宇, 苑峥岩
|
Vehicle-Road Collaborative Perception Method Based on Dual-Stream Feature Extraction
|
NIU Guochen, SUN Xiangyu, YUAN Zhengyan
|
|
表1 本文方法与其他特征提取网络的对比结果
|
Tab.1 Comparison results between method proposed and other feature extraction networks
|
|
网络 | 方法 | AP30/% | AP50/% | AP70/% | 模型大小/MB | GFLOPs | 轻量化单主干网络 | MobileNetV2 | 59.54 | 53.19 | 34.25 | 3.5 | 0.3 | FasterNet | 63.10 | 57.25 | 38.75 | 7.6 | 0.85 | YOLO-backbone | 62.19 | 55.70 | 36.11 | 5.1 | 2.1 | EfficientFormerv2 | 60.76 | 55.85 | 38.60 | 6.1 | 2.7 | 大规模单主干网络 | ResNet | 66.80 | 62.14 | 46.50 | 61.0 | 10.1 | ConvNextv2 | 66.57 | 61.61 | 46.60 | 89.0 | 15.4 | Swin-Transformer | 71.17 | 66.36 | 52.44 | 88.0 | 15.4 | 车路双流主干网络 | 本文方法 | 72.35 | 67.67 | 53.74 | 车端,8.1 | 路端,88 | 车端,1.1 | 路端,15.8 |
|
|
|