## 基于Skempton公式的沉船打捞过程安全性分析

1.上海交通大学 海洋工程国家重点实验室,上海 200240

2.上海交通大学 三亚崖州湾深海科技研究院,海南 三亚 572025

3.交通运输部上海打捞局,上海 200090

## Safety Analysis of Wreck Salvage Process Based on Skempton Function

PAN Jie1,2, WANG Lei,1,2, WANG Yiting1,2, ZHOU Dongrong3, ZHU Xiaodong3

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, Hainan, China

3. Shanghai Salvage Company of the Ministry of Transportation, Shanghai 200090, China

 基金资助: 国家自然科学基金(51179103)

Received: 2023-05-14   Revised: 2023-06-14   Accepted: 2023-07-18

Abstract

In order to evaluate the safety of salvage operation, a numerical model of the coupling dynamic response characteristics of the “Yangtze River Estuary II” salvage system is established based on the three-dimensional potential flow theory and the Skempton formula. The model has been verified by actual measurement and is used in the safety analysis of the whole salvage process. The research results show that special attention needs to be paid to the motion response of the salvage system and the tension changes of the lifting and mooring lines in the two stages of bottom-off and partial water-out in the overall salvage process. With the increase of wave height and spectral peak period, the motion response of the salvage system and the extreme value of cable tension increase. The influence of wave direction on the six-degree-of-freedom movement of the system is more complicated, and the extreme value of the tension of the lifting cable increases significantly under the action of oblique waves. According to the calculation of the safety factor of the cable, when formulating a salvage plan, an appropriate lifting speed should be selected, and at the same time, salvage operations should be avoided in waves of 20°—70°.

Keywords： wreck salvage; Skempton formula; coupling analysis; safety analysis

PAN Jie, WANG Lei, WANG Yiting, ZHOU Dongrong, ZHU Xiaodong. Safety Analysis of Wreck Salvage Process Based on Skempton Function[J]. Journal of Shanghai Jiaotong University, 2023, 57(S1): 94-107 doi:10.16183/j.cnki.jsjtu.2023.S1.18

## 1 打捞方案设计

### 图1

Fig.1   Schematic diagram of whole wreck salvage operation

### 图2

Fig.2   Snapshot of sunken ship and curved beam

Tab.1  Parameters of salvage system

### 图3

Fig.3   Mooring line arrangement of barge and wave direction

## 2 数值模拟

### 2.2 时域运动方程

$Rij(t)=2π∫0∞λij(ω)sin(ωt)ωdω$

### 2.3 海土吸附力

$Ft=5Acu1+0.2dB1+0.2BL$

### 图4

Fig.4   Adsorption force versus lifting distance

### 图5

Fig.5   Hydrodynamic model in AQWA

### 2.5 计算工况及环境参数

Tab.2  Parameter settings for different working conditions

(m·s-1)

DP10.19903.310.80.770.01
DP20.59903.310.80.770.01
DP319903.310.80.770.01
DP40.55903.310.80.770.01
DP50.57903.310.80.770.01
DP60.511903.310.80.770.01
DP70.59903.310.80.770.005
DP80.59903.310.80.770.05
DP90.59903.310.80.770.1
DP100.5903.310.80.770.01
DP110.59103.310.80.770.01
DP120.59203.310.80.770.01
DP130.59303.310.80.770.01
DP140.59403.310.80.770.01
DP150.59503.310.80.770.01
DP160.59603.310.80.770.01
DP170.59703.310.80.770.01
DP180.59803.310.80.770.01

## 3 结果分析与讨论

### 图6

Fig.6   Motion response RAO of 6-degree-of-freedom of barge

### 图7

Fig.7   Motion response RAO of 6-degree-of-freedom of wreck

### 图8

Fig.8   Time history of motion response of salvage system in off-bottom stage

DP2工况下,左右两侧提升缆的张力变化相似.在打捞作业初期,由于沉船提升,海底吸附力增加,提升缆张力变大,随着沉船脱离海底,提升力降低.整个打捞过程匀速进行,故同侧各根提升缆张力变化区别不大,右侧提升力稍大于左侧.图9所示为离底阶段提升缆R1的张力变化时程曲线.右侧提升缆张力极大值为 4 162.298 kN.图10展示了离底阶段系泊缆M1、M2的张力变化.由于布置位置的差异,系泊缆M2的张力较M1大,M1的张力极值为542.96 kN,M2的张力极值为634.53 kN.

### 图9

Fig.9   Time history of tension of lifting cable R1 in off-bottom stage

### 图10

Fig.10   Time history of tension of mooring cable M1 and M2 in off-bottom stage

### 图11

Fig.11   Time history of motion response of salvage system in underwater lifting stage

### 图12

Fig.12   Time history of tension of lifting cable R1 in underwater lifting stage

### 图13

Fig.13   Time history of tension of mooring cable M1 and M2 in underwater lifting stage

### 图14

Fig.14   Time history of motion response of salvage system in partial effluent stage

### 图15

Fig.15   Time history of tension of lifting cable R1 in partial effluent stage

### 图16

Fig.16   Time history of tension of mooring cable M1 and M2 in partial effluent stage

### 图17

Fig.17   Snapshot of wreck salvage in practice

### 图18

Fig.18   Max motion response of salvage system in different wave directions

### 图19

Fig.19   Max cable tension of salvage system in different wave directions

### 图20

Fig.20   Max motion response of salvage system at different wave heights

### 图21

Fig.21   Max cable tension of salvage system at different wave heights

### 图22

Fig.22   Max motion response of salvage system in different wave periods

### 图23

Fig.23   Max cable tension of salvage system in different wave periods

### 图24

Fig.24   Max motion response of salvage system at different lifting speeds

### 图25

Fig.25   Max cable tension of salvage system at different lifting speeds

## 4 安全性分析

$ε=σbsσws$

Tab.2  Cable safety factors in different conditions

(°)

(m·s-1)

DP10.19900.01582.1016.703 957.651.45
DP20.59900.01710.7613.684 162.301.37
DP31.09900.01902.9010.774 371.291.31
DP40.55900.01605.6316.054 028.121.42
DP50.57900.01646.5715.034 133.801.38
DP60.511900.01769.2412.644 062.401.41
DP70.59900.005718.1913.533 523.411.62
DP80.59900.05721.9713.464 379.501.31
DP90.59900.1672.5214.454 825.921.19
DP100.5900.01573.4916.954 075.731.40
DP110.59100.01586.4516.574 039.181.42
DP120.59200.01599.9616.205 198.951.10
DP130.59300.01636.1615.286 961.310.82
DP140.59400.01670.2314.508 273.320.69
DP150.59500.01674.3214.419 143.160.63
DP160.59600.01670.2014.507 211.560.79
DP170.59700.01670.7914.495 256.721.09
DP180.59800.01671.3814.484 107.061.39

## 5 结论

(1) 整个打捞过程中,由于海土吸附力以及多体耦合效应,制定打捞方案的时候,需要特别关注离底和部分出水时打捞系统运动响应以及提升缆的张力变化.

(2) 驳船和沉船运动在不同波浪条件下的变化相似.随着波高和谱峰周期的增大,打捞系统运动幅值增加,浪向变化在打捞系统六自由度方向上有不同的体现,0°浪向时纵荡运动幅度较大,斜浪向时艏摇、纵摇、纵荡方向运动较为明显,而90°作用时横荡、横摇方向运动较为剧烈.

(3) 环境条件对缆绳张力影响较为复杂.斜浪作用时,两端提升缆张力极值显著增加.提升缆在谱峰周期T=7 s时取得最大值,实际作业过程中,应尽量避免该频率附近的波浪.系泊张力随浪向角、波高和谱峰周期增大呈上升趋势,同时受布置位置的影响,横浪状态下90°布置的系泊缆张力极值最大.

(4) 提升速度对打捞系统的影响主要体现在提升缆张力极值的变化上.随着提升速度增加,提升缆张力极值大幅提高,但提升速度的增加缓解了打捞系统横摇方向的运动.因此制定打捞方案时,应综合考虑各方面的响应极值,选择合适的打捞速度.

(5) 在整个打捞过程中,提升缆的张力极值均出现在离底阶段,当浪向选择不恰当时,两端的提升缆极易出现损坏.故在制定打捞方案时,要选择合适的来浪方向,可以将两端的提升缆替换为更高强度的钢缆,或考虑变速打捞,在较危险的离底阶段保持较低的提升速度.

## 参考文献 原文顺序 文献年度倒序 文中引用次数倒序 被引期刊影响因子

HENKEL L, NEVINS H, MARTIN M, et al.

Chronic oiling of marine birds in California by natural petroleum seeps, shipwrecks, and other sources

[J]. Marine Pollution Bulletin, 2014, 79(1/2): 155-163.

CHEN Haozheng. Research on optimization on method of wreck salvaging scheme evaluation based on TOPSIS[D]. Harbin: Harbin Engineering University, 2020.

[J]. 中国工程机械学报, 2017, 15(5): 400-405.

WANG Weiping, YANG Meng, BIAN Yongming, et al.

Study of hydraulic stnchronous lifting system for shipwreck salvage with cushion compensation

[J]. Chinese Journal of Construction Machinery, 2017, 15(5): 400-405.

[J]. 船舶工程, 2020, 42(10): 35-40.

LIU Yan, WANG Zhidong, LING Hongjie.

Study of multi-body coupled hydrodynamic characteristics for large tonnage shipwreck salvage

[J]. Ship Engineering, 2020, 42(10): 35-40.

YANG Tianxiao. Study on the lifting forces computation and simulation in the process of wreck salvage with double barges[D]. Dalian: Dalian Maritime University, 2018.

[J]. 船海工程, 2018, 47(4): 165-167.

MENG Ke, DONG Haifang.

Calculation of time-domain cable tension in salvage operation

[J]. Ship & Ocean Engineering, 2018, 47(4): 165-167.

[J]. 船海工程, 2022, 51(6): 57-61.

YANG Zhiheng, LIU Yu, WANG Zhenyu, et al.

Numerical analysis of the influence of adsorption force in the lifting process of wrecked ship

[J]. Ship & Ocean Engineering, 2022, 51(6): 57-61.

XIN S, WANG Y, WANG L, et al.

Dynamic analysis of the mooring system of a salvage barge: A coupled time-domain method considering seabed resistance during the off-bottom stage

[J]. Ocean Engineering, 2023, 275: 114078.

LEE C, YOON H, KIM D, et al.

Lifting forces required to salvage a sunken vessel and caisson and their response to bottom friction, buoyancy release, surface tension, water capture and water release

[J]. Ocean Engineering, 2016, 125: 82-89.

National Standard of the People’s Republic of China. Electric welding anchor chain: GB/T 549—2017[S]. Shanghai: Shanghai Institute of Standardization, 2017.

[J]. 海军工程学院学报, 1998(3): 51-55.

JIN Guangquan, JIN Tao, CHEN Xiaohong, et al.

Experimental research on breakout force of embedded objects from sediments

[J]. Journal of Naval University of Engineering, 1998(3): 51-55.

SUI Jilin. Study on adsorption power of submersible structure from sediment[D]. Dalian: Dalian University of Technology, 2009.

/

 〈 〉