## 竖向小曲率半径曲线顶管掘进管节-土体相互作用

1.同济大学 地下建筑与工程系,上海 200092

2.新疆大学 建筑工程学院,乌鲁木齐 830047

3.上海隧道工程有限公司,上海 200032

4.交通运输部上海打捞局,上海 200090

## Pipe-Ground Interaction During Curved Pipe Jacking Process with a Small Radius of Vertical Curvature

LI Deng1, ZHUANG Qianwei3, HUANG Xin,1,2, ZHOU Dongrong4, ZHU Xiaodong4, ZHANG Chi3, WEI Liangmeng4

1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

2. College of Civil Engineering and Architecture, Xinjiang University, Urumuchi 830047, China

3. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China

4. Shanghai Salvage Ministry of Transport, Shanghai 200090, China

 基金资助: 上海市科委社发领域重大项目(21DZ1201103)国家自然科学基金(52278407)

Received: 2022-07-7   Revised: 2022-07-25   Accepted: 2022-08-22

“长江口二号”古沉船采用国际首创的曲线顶管底幕法进行打捞,其顶管机的机械设计及管节的结构设计需明确顶管管节与地层的相互作用并建立合理的顶推力计算模型.在厘清顶管掘进过程中管节-地层相互作用因素的基础上,基于极限平衡理论,推导竖向小曲率半径曲线顶管掘进顶推力计算方法.采用耦合欧拉-拉格朗日(CEL)方法对单根管节的动态掘进过程进行数值模拟分析,获得小曲率半径矩形曲线顶管掘进过程中地层应力和地表变形的动态变化规律,并通过与模型试验、现场施工监测数据和理论计算结果的对比分析,明确竖向小曲率半径曲线顶管动态掘进过程中顶推力的动态变化特征及控制因素.研究成果可为类似“长江口二号”打捞工程的实施提供重要的理论依据和技术指导.

Abstract

The salvage of “Yangtze River Estuary II” ancient wreck adopted the world’s first curved pipe based method. The mechanical design of the pipe jacking machine and the structure design of curved pipe relied on the understanding of the pipe-ground interaction mechanism and establishment of a reasonable model for calculating the driving force. Based on the understanding of the major factors contributing to the pipe-ground interaction, a theoretical model for calculating the driving force of curved pipe jacking machine with a small radius of vertical curvature was derived through equilibrium analysis. The dynamic jacking process of a single pipe was simulated using the coupled Eulerian Lagrangian (CEL) method, from which the evolution processes of ground stress and ground surface settlement during the curved pipe jacking process with a small radius of vertical curvature were obtained. The simulation results were compared with model test data, on-site monitoring data, and theoretical calculation results, whereby the characteristics of driven force evolution and its controlling factors were obtained. The research outcome can provide theoretical basis and technical support for future wreck salvage project similar to “Yangtze River Estuary II”.

Keywords： curved pipe based method; wreck salvage; driving force; coupled Eulerian Lagrangian (CEL) method; ground settlement

LI Deng, ZHUANG Qianwei, HUANG Xin, ZHOU Dongrong, ZHU Xiaodong, ZHANG Chi, WEI Liangmeng. Pipe-Ground Interaction During Curved Pipe Jacking Process with a Small Radius of Vertical Curvature[J]. Journal of Shanghai Jiaotong University, 2023, 57(S1): 69-79 doi:10.16183/j.cnki.jsjtu.2023.S1.02

2022年11月21日,目前我国水下考古发现的体量最大、保存最为完整的木质沉船“长江口二号”在上海长江口横沙岛附近顺利打捞出水,标志着我国水下打捞技术取得了里程碑式的突破.“长江口二号”采用国际首创的矩形曲线顶管底幕法进行整体打捞和搬迁,其基本思想来源于隧道及地下工程中的管幕法[1],采用“无缝”连接的矩形曲线顶管顺次通过竖向小曲率推进在土体中形成弧形底部托盘,对内部空间进行保护.由于没有先例可循,打捞工程的实施需要解决顶管机设计、施工顺序优化、沉船扰动控制等一系列难题.其中,明确顶管管节与地层的相互作用、建立合理的顶推力计算模型是该技术应用中顶管机机械设计和管节结构设计需要重点关注的问题.

## 1 矩形曲线顶管底幕法简介

“长江口二号”矩形曲线顶管底幕法打捞概念图如图1 所示.打捞装置主要部件包括端板及端板间的顶梁、导向架和矩形弧形顶管管节.通过两侧端板进行侧向定位,由相互密合的弧形管节形成底部托盘承载沉船及船上文物,端板和管节形成封闭的空间防止托盘内的水土流失,避免对沉船和船载文物造成损伤.顶梁为管节始发及接收的支座,同时也是最终整体起吊的受力点.通过自主研发的行星式顶管机驱动管节通过导向架顶入地层,在导向架顶部、底部和两侧设置滚珠的方式,降低顶推力的摩擦损失.为了避免顶梁产生较大形变,兼顾现场施工条件,采用一定的顺序依次顶进管节,直至形成完整的底部托盘.

### 图1

Fig.1   Schematic illustration of rectangular curved pipe based method

## 2 “长江口二号”打捞工程实施过程

### 图2

Fig.2   Process of on-site salvage operation

## 3 基于极限平衡的竖向小曲率半径顶管-地层相互作用模型

### 3.1 基本假设

(1) 土体初始主应力沿竖直和水平方向.

(2) 管节为刚体,即不计其变形的影响.

(3) 考虑发射架的限位作用,假设管节始终沿着既定轨迹运动,顶推力始终沿着顶进轨迹的切线方向作用.

(4) 假设轴向力的传递是连续的,管节与导向架的摩擦阻力可忽略不计.

(5) 土体的剪切塑性特性服从摩尔库伦准则.

(6) 管节顶进过程中,邻近土体处于临界剪切屈服状态.

### 图3

Fig.3   Schematic illustration of forces experienced by rectangular curved beam with an extremely small curvature

### 图4

Fig.4   Simplified calculation model of frictional resistance on inner surface

$σ1=γR1sinα$
$τ1=c+σ1tanφ$

$M1=LR12∫0θτ1dα α<θ, θ<πX1=LR1∫0θ(-σ1·cosα-τ1·sinα)dα α<θ, θ<πY1=LR1∫0θ(-σ1·sinα+τ1·cosα)dα α<θ, θ<π$

### 图5

Fig.5   Simplified calculation model for frictional resistance on external surface

$τ2=c+σ2tanφ$

$M2=LR22∫0θτ2dβ β<θ, θ<πX2=LR2∫0θ(σ2·cosβ-τ2·sinβ)dβ β<θ, θ<πY2=LR2∫0θ(σ2·sinβ+τ2·cosβ)dβ β<θ, θ<π$

#### 3.3.3 侧面分量

$τ3=c+Kγrsinθ$

### 图6

Fig.6   Simplified calculation model for side frictional resistance

#### 3.3.4 迎面分量

$M4=γ·LR23-R133sinθ·(cos2θ+Ksin2θ)X4=-sinθ·γ·LR22-R123× sinθ·(cos2θ+Ksin2θ)Y4=cosθ·γ·LR22-R123× sinθ·(cos2θ+Ksin2θ)$

#### 3.4.1 管节自重

$M5=GBhcsinθX5=0Y5=-GB$

#### 3.4.2 管节与导向架相互作用力

$M6=NtR1X6=Ntsin(β)-Ncos(β)Y6=Ntcos(β)+Nsin(β)$
$Nt=KtN$

#### 3.4.3 顶推力

$M7=-T(R1+R2)/2X7=-TsinθY7=Tcosθ$

#### 3.4.4 平衡方程

$0=M1+M2+M3+M4+M5+M6+M70=X1+X2+X3+X4+X5+X6+X70=Y1+Y2+Y3+Y4+Y5+Y6+Y7$

## 4 考虑大变形的CEL有限元方法

### 图7

Fig.7   Spatial relation of curved beam-air-soil system

### 图8

Fig.8   Mesh of CEL model

### 图9

Fig.9   Schematic graph of locations of tracing particles

## 5 结果分析

### 图10

Fig.10   Stress contour of strata in advancement of curved beam

### 图11

Fig.11   y-direction soil settlement at the end of construction

$Y3$测线在距离管节5 m处有轻微的隆起,这是因为管节进出入土时周围土体被挤开,管节入土处周围土体相较于外侧土体呈隆起状,这一点与图10(g)一致.

### 图12

Fig.12   x-direction soil settlement at the end of construction

### 图13

Fig.13   Thrust force evolution in different advancement modes

### 图14

Fig.14   Evolution of driving force with advancement angle

Tab.1  Major physical and mechanical properties of stratum

## 6 结论

(1) 管节端面土体出现了明显的应力集中,由于一部分土体随管节运动导致局部脱空使管节所受竖向应力降低,这可能是导致实测及数值模拟顶推力小于理论计算结果的主要原因.

(2) 入土侧、管节上方和出土侧的横向沉降呈现不同规律,但沿纵向的沉降变化不大,出土侧略小于入土侧.

(3) 土由于管节自重、摩阻力和管节-框架相互作用力的联合作用,竖向曲线顶管顶推力随顶进角度的增加先增大后减小,在推进至约120°~140°时达到峰值,剪切滑移为顶管管节-地层相互作用的控制因素.

## 参考文献 原文顺序 文献年度倒序 文中引用次数倒序 被引期刊影响因子

[J]. 岩土工程界, 2006(2): 27-29.

SHEN Guiping, CAO Wenhong, YANG Junlong, et al.

Review of curtain control

[J]. Geotechnical Engineering Community, 2006(2): 27-29.

[J]. 岩土工程技术, 2006, 20(5): 229-232.

MA Baosong, ZHANG Yachun.

Curved pipe jacking technology and the calculation of jacking loads for curved section

[J]. Geotechnical Engineering Technique, 2006, 20(5): 229-232.

SOFIANOS A I, LOUKAS P, CHANTZAKOS C.

Pipe jacking a sewer under Athens

[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 193-203.

ZHANG Peng. Research on key construction techniques and theory of super large curved pipe jacking roof in Gongbei tunnel[D]. Wuhan: China University of Geosciences, 2018.

[J]. 上海交通大学学报, 2011, 45(10): 1493-1497.

LEI Han, CHEN Jinjian, WANG Jianhua, et al.

Analysis of mechanical characteristics of large diameter concrete pipe jacking pipeline

[J]. Journal of Shanghai Jiao Tong University, 2011, 45(10): 1493-1497.

[J]. 上海交通大学学报, 2014, 48(11): 1503-1509.

LIU Xiang, BAI Haimei, CHEN Xiaochen, et al.

Field test of mechanical properties of large diameter concrete jacking pipe in soft soil

[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1503-1509.

[J]. 地下空间与工程学报, 2007, 3(2): 218-223.

YOU Guangming, ZHU Hehua, LIU Xuezeng, et al.

3D finite element analysis of influence of curved pipe-jacking construction on environments

[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(2): 218-223.

[J]. 地下空间与工程学报, 2011, 7(6): 1209-1215.

BING Fengju, WANG Xin, XI Ning, et al.

3D numerical simulation of pipe jacking and its soil applicability study

[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1209-1215.

[J]. 隧道建设(中英文), 2019(S2): 110-119.

WANG Hemin, XIAO Zunqun, TANG Dongsang, et al.

Numerical simulation and field monitoring of construction process of rectangular pipe jacking in No. 1 underground passage of Shangdu Road station on Zhengzhou metro line 4

[J]. Tunnel Construction, 2019(S2): 110-119.

HUANG Jilong. Experimentation and numerical analysis of large diameter glass reinforced plastic mortar pipe-jacking[D]. Shanghai: Shanghai Jiao Tong University, 2007.

[J]. 铁道标准设计, 2016, 60(5): 95-98.

ZHANG Binliang, WANG Xiangyu, GAO Haidong, et al.

Experimental study on pipe stress characteristics of curved pipe-jacking

[J]. Railway Standard Design, 2016, 60(5): 95-98.

[J]. 岩石力学与工程学报, 2017, 36(9): 2251-2259.

SHI Peixin, YU Caicheng, PAN Jianli, et al.

Analysis on the jacking load of the curved pipe roof supporting the large diameter Gongbei tunnel

[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2251-2259.

DING Chuansong. Study on jacking force induced by linea and curved pipe jacking construction[D]. Nanjing: Nanjing University of Technology, 2004.

CHEN Zhongjie. Physical model experiment and propulsive force analysis of curved tube propulsion[D] Taibei: Chung Hsing University, 2008.

SHOU K, YEN J, LIU M.

On the frictional property of lubricants and its impact on jacking force and soil-pipe interaction of pipe-jacking

[J]. Tunnelling and Underground Space Technology, 2010, 25(4): 469-477.

[J]. 现代隧道技术, 2022, 59(S1): 461-470.

LI Deng, ZHUANG Qianwei, HUANG Xin, et al.

Research on the calculation model of driving force for pipe jacking of rectangular curved pipe basing method

[J]. Modern Tunnelling Technology, 2022, 59(S1): 461-470.

NOH W F.

A time-dependent, two space dimensional, coupled Eulerian-Lagrange code

[M]\\ALDER B, FERNBACH S, RITENBERG M, et al. Methods in computational physics. New York: Academic Press, 1963: 12-23.

[J]. 力学与实践, 2016, 38(3): 237-249.

YAN Shuwang, HUO Zhiliang.

Advance in numerical simulation methods for penetration in geotechnical engineering

[J]. Mechanics in Engineering, 2016, 38(3): 237-249.

QIU G, HENKE S, GRABE J.

Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations

[J]. Computers and Geotechnics, 2011, 38(1): 30-39.

THO K K, LEUNG C F, CHOW Y K, et al.

Eulerian finite-element technique for analysis of jack-up spudcan penetration

[J]. International Journal of Geomechanics, 2012, 12(1): 64-73.

[J]. 科学技术与工程, 2022, 22(31): 13905-13913.

ZHAI Yixin.

Reduced-scale model tests on the curved pipe basing wreck salvage method

[J]. Science Technology and Engineering, 2022, 22(31): 13905-13913.

PAN Tongyan. Study on construction mechanics analysis and monitoring technology of large diameter sharp curve pipe jacking[D]. Shanghai: Tongji University, 2000.

[J]. 华南理工大学学报(自然科学版), 2021, 49(4): 28-38.

WEI Limin, LI Shuanglong, DU Meng, et al.

Numerical analysis on squeezing effect of jacked pipe pile based on CEL method

[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(4): 28-38.

FENG Lingyun. Numerical study on large deformation pipe-soil interaction for deep-water pipelines in soft clay[D]. Hangzhou: Zhejiang University, 2019.

/

 〈 〉