## 基于重叠网格方法的中型邮轮减摇鳍数值和试验分析

1.上海交通大学 海洋工程国家重点实验室,上海 200240

2.上海交通大学 船舶海洋与建筑工程学院,上海 200240

## Numerical and Testing Analysis of Fin Stabilizers of A Medium Sized Cruise Ship with Overset Grids

YAO Rulin1,2, FAN Qidong2, YU Long,1,2, WANG Xuefeng1,2

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 2022-07-7   Revised: 2022-07-25   Accepted: 2022-08-22

Abstract

Fin stabilizers represent an effective solution to address the roll motion of ships and improve the comfort of passengers on cruise ships. These devices typically comprise of one or two pairs of retractable fins, symmetrically mounted on either side of the ship, which utilize hydrodynamic lift to dampen motion through a control algorithm. However, coupling analysis of fin stabilizers and ships at various speeds and angles of attack remains limited, particularly with regard to the impact of the hull flow field on fin resistance. This paper investigates the drag performance and towing motion of a cruise ship using model tests and numerical analysis methods, and compares the results of the numerical and model tests. It also examines the drag resulting from fin stabilizers and the coupling motion of the ship, offering insight for the design and selection of fin stabilizers, cruise ship design, and performance prediction.

Keywords： fin stabilizer; model test; resistance; cruise ship; different fin angles; different ship speed

YAO Rulin, FAN Qidong, YU Long, WANG Xuefeng. Numerical and Testing Analysis of Fin Stabilizers of A Medium Sized Cruise Ship with Overset Grids[J]. Journal of Shanghai Jiaotong University, 2023, 57(S1): 178-184 doi:10.16183/j.cnki.jsjtu.2023.S1.04

### 图1

Fig.1   Retractable fin device

Gaillarde[2]和Ram等[3]针对多种不同的带减摇鳍船型进行了模型和数值模拟试验,研究减摇鳍升阻力性能.但是在不同角度、不同速度下鳍片的升力和阻力特性研究还较为欠缺.Perez等[4]的研究表明,有效攻角应被限制以避免出现动态失速.有学者对一艘鳍翼型为NACA0013的水翼巡逻艇进行数值分析,发现在0°、5°、10° 和20° 攻角,船速为25~30 kn(1 kn=1 852 m/h)时,鳍的攻角增加引起阻力增大.攻角15° 时,船体阻力增加总量可达13.92%~18.79%[5].

Kim等[6]对安装减摇鳍的邮轮在遭遇波浪条件下的运动进行了数值分析.当船速为23 kn(中等速度)时,减摇鳍控制系统将横摇振幅降低了90.1%.当船速为7 kn(低速)时,横摇振幅降低了52.3%.

## 1 带减摇鳍邮轮船型介绍

Tab.1  Main parameters of the ship model

### 图2

Fig.2   Ship model with a pair of fin stabilizers

### 图3

Fig.3   Fins with different rotation directions

## 2 数值方法

### 2.1 控制方程

$∂u-i∂xi=0$
$∂(ρu-i)∂t+∂∂xj(ρu-ju-i)= -∂p-∂xi+Fi+∂∂xj(σji+Rji)$

## 3 计算域及网格划分

### 图4

Fig.4   Calculation domain

### 图5

Fig.5   Mesh around the hull with fins

### 图6

Fig.6   Streamline information of 0° fin stabilizer

### 图7

Fig.7   Y+ of vessel and 0° fins

## 4 试验设置

### 图8

Fig.8   Ship model with fins

Tab.2  Conditions of model test

kn

(Fr)

(m·s-1)

020
150.0570.3468
2140.1590.9711
3180.2041.2485
4220.2491.5260

## 5 数值计算与试验结果比较分析

### 图9

Fig.9   Drag curves of ship with or without fins

Tab.3  Comparison of results of resistance test

DFBI模拟07.926
DFBI模拟2010.11

### 5.2 鳍的阻力评估

$CL=FL0.5ρAUf2$
$CD=FD0.5ρAUf2$

$Re¯=ρUfLμ$

Tab.4  Drag of 20° fin in the model state

FrRe减摇鳍阻力/N

CFD计算值不考虑船体

0.1591.19×1051.8341.7492.598
0.2041.53×1052.75962.76173.946
0.2491.87×1054.04374.06486.098

### 图10

Fig.10   Detailed analysis of fin pressure and skin friction factor at different speeds

### 5.3 静水中带鳍船运动分析

Tab.5  Comparison of testing and numerical results of ship motions at 18 kn

## 6 结论

(1) 试验提供了可靠的船鳍作用下阻力结果.在不同船速下,不同攻角的鳍平均阻力增量超过8%,而在最大鳍片角度下阻力增量高达 19%.由试验得出,鳍片阻力在20°攻角比0°下增加4倍.试验结果表明鳍片诱导阻力影响显著,在设计中应该予以重视.

(2) 采用重叠网格CFD进行非定常分析计算了船鳍耦合和非耦合情况的鳍片阻力.船鳍耦合的CFD计算误差低于5%,而仅计算均匀流场中鳍的阻力,其结果会高估约 40%,船鳍耦合效应不可忽略.根据详细的流场信息和计算结果,发现随着速度提高,减摇鳍的高压区向前缘移动,而摩擦区向后缘移动.

(3) 对静水中减摇鳍的数值计算方法进行了研究,发现计算时减摇鳍部分Y+需小于100,才能精确捕捉船鳍耦合运动的流场,获得精度较高的船舶运动数据.

## 参考文献 原文顺序 文献年度倒序 文中引用次数倒序 被引期刊影响因子

LIANG L H, ZHAO P, ZHANG S T, et al.

Simulation and analysis of Magnus rotating roll stabilizer at low speed

[J]. Ocean Engineering, 2017, 142: 491-500.

GAILLARDE G.

Dynamic behaviour and operational limits of stabilizer fins

[C]\\10th Congress of International Maritime Association of the Mediterranean. Creta, Greece. 2002.

RAM B R R, SURENDRAN S, LEE S K.

Computer and experimental simulations on the fin effect on ship resistance

[J]. Ships & Offshore Structures, 2015, 10(2): 122-131.

PEREZ T, BLANKE M.

Ship roll damping control

[J]. Annual Reviews in Control, 2012, 36(1): 129-147.

KUSDIANA W, SEMIN, MADE ARIANA I, et al.

Location analysis of patrol boat fin stabilizer based on numerical method

[J]. IOP Conference Series: Earth & Environmental Science, 2022, 972(1): 012002.

KIM J H, KIM Y H.

Motion control of a cruise ship by using active stabilizing fins

[J]. Proceedings of the Institution of Mechanical Engineers,Part M: Journal of Engineering for the Maritime Environment, 2011, 225(4): 311-324.

[J]. 船舶力学, 2010, 14(8): 823-833.

WU Chengsheng, CHEN Xiong, SUN Lixian, et al.

Numerical simulation of free ship model towed in still water

[J]. Journal of Ship Mechanics, 2010, 14(8): 823-833

LEE S, RHEE K P, CHOI J W.

Design of the roll stabilization controller, using fin stabilizers and pod propellers

[J]. Applied Ocean Research, 2011, 33(4): 229-239.

[J]. 哈尔滨工程大学学报, 2017, 38(12): 1828-1835.

CAO Yang, ZHU Renchuan, JIANG Yin, et al.

CFD verification and analysis of added resistance and motions of KVLCC2 in head waves

[J]. Journal of Harbin Engineering University, 2017, 38(12): 1828-1835.

VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: The finite volume method[M]. 2nd ed. Harlow, England ; New York, USA: Person Education Ltd., 2007.

MENTER F R.

Two-equation eddy-viscosity turbulence models for engineering applications

[J]. AIAA Journal, 1994, 32(8): 1598-1605.

[C]\\第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议, 北京: 海洋出版社, 2019: 210-215.

WANG Hui, ZHURenchuan,YANG Yuntao.

The resistance calculation of the high-speed planing based on RANS equations

[C]\\The 30th National Symposium on Hydrodynamics & 15th National Conference on Hydrodynamics, Beijing, China: China Ocean Press, 2019, 210-215.

WANG Jianhua. Direct simulations of ship maneuver using overset grid technique[D]. Shanghai: Shanghai Jiao Tong University, 2018.

YAO R L, YU L, FAN Q D, et al.

Experimental and numerical resistance analysis for a cruise ship W/O fin stabilizers

[J]. Journal of Marine Science & Engineering, 2022, 10(8): 1054.

/

 〈 〉