基于窗口自注意力网络的单图像去雨算法
|
高涛, 文渊博, 陈婷, 张静
|
A Single Image Deraining Algorithm Based on Swin Transformer
|
GAO Tao, WEN Yuanbo, CHEN Ting, ZHANG Jing
|
|
表4 不同算法在合成雨图测试数据集[28-29,10,12]上的定量对比结果
|
Tab.4 Comparative results of different methods on synthetic datasets[28-29,10,12]
|
|
算法 | Test100[28] | | Rain100H[29] | | Rain100L[29] | | Test2800[10] | | Test1200[12] | | 平均 | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB (G/%) | SSIM (G/%) | DerainNet[10] | 22.77 | 0.810 | | 14.92 | 0.592 | | 27.03 | 0.884 | | 24.31 | 0.861 | | 23.38 | 0.835 | | 22.48 (45.6)↑ | 0.796 (17.3)↑ | SEMI[11] | 22.35 | 0.788 | | 16.56 | 0.486 | | 25.03 | 0.842 | | 24.43 | 0.782 | | 26.05 | 0.822 | | 22.88 (43.9)↑ | 0.744 (25.5)↑ | DIDMDN[12] | 22.56 | 0.818 | | 17.35 | 0.524 | | 25.23 | 0.741 | | 28.13 | 0.867 | | 29.65 | 0.901 | | 24.58 (34.0)↑ | 0.770 (21.3)↑ | UMRL[13] | 24.41 | 0.829 | | 26.01 | 0.832 | | 29.18 | 0.923 | | 29.97 | 0.905 | | 30.55 | 0.910 | | 28.02 (17.5)↑ | 0.880 (6.14)↑ | RESCAN[14] | 25.00 | 0.835 | | 26.36 | 0.786 | | 29.80 | 0.881 | | 31.29 | 0.904 | | 30.51 | 0.882 | | 28.59 (15.1)↑ | 0.857 (8.98)↑ | PReNet[15] | 24.81 | 0.851 | | 26.77 | 0.858 | | 32.44 | 0.950 | | 31.75 | 0.916 | | 31.36 | 0.911 | | 29.42 (11.9)↑ | 0.897 (4.12)↑ | MSPFN[16] | 27.50 | 0.876 | | 28.66 | 0.860 | | 32.40 | 0.933 | | 32.82 | 0.930 | | 32.39 | 0.916 | | 30.75 (7.06)↑ | 0.903 (3.43)↑ | MPRNet[17] | 30.27 | 0.897 | | 30.41 | 0.890 | | 36.40 | 0.965 | | 33.64 | 0.938 | | 32.91 | 0.916 | | 32.73 (0.58)↑ | 0.921 (1.41)↑ | 本文算法 | 28.28 | 0.913 | | 30.22 | 0.904 | | 37.53 | 0.979 | | 33.76 | 0.952 | | 34.83 | 0.924 | | 32.92 | 0.934 |
|
|
|