上海交通大学学报, 2023, 57(5): 552-559 doi: 10.16183/j.cnki.jsjtu.2021.466

生物医学工程

高灰度级高分辨率激光散斑血流实时成像研究

张泽龙1, 张颖超2, 伍波2, 董威,1, 樊友本2

1.上海交通大学 中英国际低碳学院,上海 200240

2.上海交通大学医学院附属第六人民医院 甲乳疝外科; 上海交通大学甲状腺疾病诊治中心,上海 200233

Real-Time Laser Speckle Imaging of Blood Flow with High Gray Level and High Resolution

ZHANG Zelong1, ZHANG Yingchao2, WU Bo2, DONG Wei,1, FAN Youben2

1. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China

2. Department of Thyroid-Breast-Hernia Surgery; Thyroid and Parathyroid Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

通讯作者: 董威,教授,博士生导师,电话(Tel.):021-34204410;E-mail:wdong@sjtu.edu.cn.

责任编辑: 李博文

收稿日期: 2021-11-18   修回日期: 2022-01-18   接受日期: 2022-01-19  

基金资助: 中国科学院大学宁波生命与健康产业研究院合作资助项目(2019YJY0201)

Received: 2021-11-18   Revised: 2022-01-18   Accepted: 2022-01-19  

作者简介 About authors

张泽龙(1996-),硕士生,从事生物医学光学成像与多相流研究.

摘要

激光散斑对比成像是一种大测量范围、实时、高分辨率的光学成像方法.现有研究表明,低灰度级(8位)低分辨率(752像素×480像素)照相机可以有效监测血液等散射介质流动,但散粒噪声大、有效成像区域小等缺点难以通过软件弥补,严重影响成像质量.使用高灰度级(16位)高分辨率(2 048像素×2 048像素)照相机监测血液流动会减慢单帧成像速度,并行计算能使图像处理时间减少1/3.研究借助动物血液流动实验,以成像速度与成像质量为评价标准,对比分析高灰度级高分辨率空间激光散斑对比成像与空间近似激光散斑对比成像(sLSCIa)、时间激光散斑对比成像(tLSCI)的结果.结果表明,高灰度级高分辨率空间激光散斑对比成像并行计算兼顾成像质量与成像速度,可以达到临床实时监测血液流动要求.

关键词: 激光散斑对比成像; 血流监测; 图像处理技术; 并行计算

Abstract

Laser speckle contrast imaging (LSCI) is a large measurement ranging, real-time, high spatial resolution optical imaging method. Exisiting reserches show that the low gray level (8-bit) and low resolution (752×480 pixels) camera can effectively monitor the flow of scattering media such as blood, but the defects such as large noise of scattered particles and small effective imaging area are difficult to be compensated by software, which seriously affects the imaging quality. Monitoring blood flow with a camera with a high gray level (16-bit) and a high resolution (2 048×2 048 pixels) will slow down the imaging speed of a single frame, and parallel computing can reduce the image processing time by 1/3. With the aid of an animal blood flow experiment, the results of high-gray-level and high-resolution spatial laser speckle contrast imaging (sLSCI), spatial approximate laser speckle contrast imaging (sLSCIa), and temporal laser speckle contrast imaging (tLSCI) were compared and analyzed using imaging speed and imaging quality as evaluation criteria. The parallel computation of high-gray-level and high-resolution sLSCI takes into consideration both imaging quality and imaging speed, which can meet the requirements of clinical real-time monitoring of blood flow.

Keywords: laser speckle contrast imaging (LSCI); blood flow monitoring; image processing technology; parallel computing

PDF (27048KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张泽龙, 张颖超, 伍波, 董威, 樊友本. 高灰度级高分辨率激光散斑血流实时成像研究[J]. 上海交通大学学报, 2023, 57(5): 552-559 doi:10.16183/j.cnki.jsjtu.2021.466

ZHANG Zelong, ZHANG Yingchao, WU Bo, DONG Wei, FAN Youben. Real-Time Laser Speckle Imaging of Blood Flow with High Gray Level and High Resolution[J]. Journal of Shanghai Jiaotong University, 2023, 57(5): 552-559 doi:10.16183/j.cnki.jsjtu.2021.466

激光照射粗糙表面或高度散射介质会散射出具备不同散射角和光程的光束,它们在空间中某一点汇聚时会发生干涉,形成激光散斑,用成像设备观测到明暗相间的图案称作散斑图像.散斑现象在激光、超声波等相干波应用中十分常见,散斑可以当作检测材料形变的标记[1].激光散斑图像会因血液等散射介质运动而模糊,其模糊程度取决于流动快慢,因而可以借助激光散斑图像模糊程度进行血液流动速度的无接触测量.

激光散斑对比成像(LSCI)技术是Fercher与Briers[2]于1981年提出的基于衬比度与散射介质运动速度关系的成像技术,并被首次运用于识别与血流成像.常见的血流监测方式如吲哚青绿荧光造影(ICGA)成像[3]与激光多普勒(LDF)[4],在实时监测中存在很多限制,如测量范围小、接触式测量等.LSCI是一种非接触式、测量范围大、实时、高时空分辨率的光学成像方法,近年来随着计算机技术进步,LSCI技术再次引起关注.

血管、血流及相关的微循环与生命活动密切相关,生物不同的生理状态往往对应着不同的血流状态.部分手术中,使用有效监测设备可以极大提升手术效率.以甲状腺切除手术为例,由于术中健康甲状旁腺的血液供应意外中断,近50%的患者在甲状腺手术后会发生甲状旁腺功能减退[5],所以血流监测在甲状腺切除等手术中有良好的应用前景[6-8].

LSCI主要分为空间散斑衬比度成像(sLSCI)[9]与时间散斑衬比度成像(tLSCI)[10].利用sLSCI计算单帧图像,tLSCI计算连续时间上的多张图像,通常需要20张图片.tLSCI具有更高的空间分辨率,但连续时间的散斑图像序列极易受到如呼吸、心跳等外界干扰的影响,现有解决方法包括基于散斑图像配准的 tLSCI[11],可以消除微小波动;跳跃连接的关联残差学习(DRSNet)方法,可以减少tLSCI所需统计数量,实现从5帧到20帧的效果[12],进而减少干扰影响.此外,也可使用与心跳呼吸同步拍摄[13]等方法,通过外部设备减少干扰的影响.相较而言,sLSCI技术更为简单可靠.

高灰度级照相机能增加sLSCI稳定性[14],高分辨率能有效弥补sLSCI造成的空间分辨率降低问题,然而高分辨、高灰度级图像需要更长的计算时间,导致实时监测中延迟时间更长.使用硬件辅助计算,如现场可编程逻辑门阵列(FPGA),可以实现在空间分辨率由1 024像素×1 024像素降至256像素×256像素条件下提高处理速度与图像质量[15],但分辨率降低可能导致散斑与像素大小比值不符合奈奎斯特准则[16],加速的结果可能无法监测细小血管.sLSCI的标准差函数不能表示为线性运算的组合,sLSCI中相互独立的标准差计算循环耗时最多.为解决上述问题,提出通过简化sLSCI中标准差计算的近似计算及并行计算方法,有效缩短sLSCI耗时,从而达到高分辨、高灰度级图像临床实时监测血液流动要求,同时通过对比分析不同计算方法的LSCI结果,得到血液实时监测最佳方案.

1 激光散斑成像sLSCI方法

1.1 激光散斑衬比度计算

激光散斑成像衬比度K模型[17]

K2= 2βT0T 1-τTg12(τ)dτ

式中:β为光学系统系数;T为照相机曝光时间;g1(τ)为电场自相关函数.通常认为g1(τ)=e-τ/τc,时间经过τc后,g1(τ)=1/e,此时,t时刻与t+τc时刻电场不相关.散射介质运动越快,相关时间τc就越小.散射介质速度v∝1/τc.通常情况下,τc≪T,散射介质速度v∝1/K2.

实际应用中,可通过成像设备捕捉的散斑图I得到衬比度K,如图1所示.图1(a)中蓝色的区域[x-N: x+N, y-N: y+N]为大小(2N+1)×(2N+1)的计算核;记k2N+1,N为正整数,x与y为坐标;计算核是计算K(x, y)的统计区域.图中I表示未处理的原始图片,即散斑图像;K表示处理结果,即衬比度.sLSCI衬比度K定义为计算核k2N+1区域I的标准差δI与平均值$\bar{I}$比值

K(x,y)= δII-= i=x-Nx+N j=y-Ny+N(I(i,j)-I-(x,y))2(2N+1)2-11(2N+1)2i=x-Nx+N j=y-Ny+NI(i,j)

图1

图1   空间激光散斑成像(sLSCI)与时间激光散斑成像(tLSCI)

Fig.1   sLSCI and tLSCI


式中:x-N≤i≤x+N;y-N≤j≤y+N;(i, j)为计算核中的像素在散斑图I上的坐标.

1.2 sLSCI近似计算

近似计算方法简化了标准差,解决了式(2)中标准差计算无法线性计算的问题,避免了相互独立循环的计算.假设将计算核k2N+1内各点I(i, j)与中心点I-(x, y)的差即I(i, j)-I-(x, y),替换成各点与本地的差即I(i, j)-I-(i, j),图像上运动区域K与静止区域K比例不变.利用本地I-(i, j)代替计算核k中心I-(x, y).只需一次计算就能得到K.

K(x,y)= δII-= i=x-Nx+N j=y-Ny+N(I(i,j)-I-(i,j))2(2N+1)2-11(2N+1)2i=x-Nx+N j=y-Ny+NI(i,j)

1.3 sLSCI并行计算

式(2)中,每次计算K(x, y)如图1(a)所示移动核k,以 2 048像素×2 048 像素图片计算核k3为例,一张图片需要 2 046×2 046 次循环,单循环9次计算.并行计算一次可以执行多个命令的算法,扩大求解规模来求解问题,但是CPU并行计算大量简单循环,进程调用会消耗大量时间.因此,处理一张图片只使用9次循环,单循环 2 046×2 046次计算可以减少循环次数,提高计算速度.

首先,使用尺寸等同计算核k,数值大小为1/(2N+1)2的卷积核与散斑图像I(x, y)卷积得到散斑图像平均值I-k;其次,计算核内点I(i,j)与中心点I-(x,y)的均方差,δI(i,j)(x,y)=(I(x+i,y+j)-I-k(x,y))2,i,j=-1,0,1,δI(x,y)=19∑δI(i,j)(x,y),如图2(a)所示,这种运算相当于I-k在固定条件下移动I,如图2(b)所示,I坐标沿红色折线整体顺时针平移.黑色实线为散斑图,蓝色实线为最终的计算结果,绿色为散斑图移动留下的边框.

图2

图2   sLSCI并行计算

Fig.2   sLSCI with parallel computing


考虑到每次计算结果都独立,利用式(2)进行并行计算,同时计算δI(i, j),可以减少单张sLSCI图片生成时间.在此基础上利用Python编写实时并行框架的激光散斑成像监测程序,使用开源OpenCV解决工业照相机因驱动程序导致丢帧的问题.

1.4 信噪比量化

信噪比 (SNR)是衡量一幅图像信号与噪声的比值.一般来说,成像质量越好,SNR越大.本文定义信噪比为

RSN= K-δK

式中:K-为衬比度的平均值;δK为衬比度的标准差.图像越平滑,标准差越小,信噪比越高.使用信噪比评价成像质量,评价区域包括血流与静态组织区域.

2 LSCI血流实验

根据LSCI原理,结合临床应用中仪器与监测目标的最小距离等要求,设计并搭建LSCI系统原理样机.LSCI系统主要由3部分组成:激光器、成像系统以及计算机.激光的波长为785 nm,功率为60 mW.肠系膜分布着密集的毛细血管,适合用来检验血流监测效果,因此实验监测对象为兔子肠系膜.实验使用8位NS1044BU照相机(NET GmbH Company, Germany),分辨率为752像素×480像素(约36万),60帧/s与16位PCO.panda 4.2照相机(PCO Company, Germany),2 048像素×2 048像素(约420万),44帧/s拍摄.散斑图像均使用Python编写的Windows系统程序处理.使用伪彩图凸显流动信息会使不同计算方法的LSCI背景颜色差异过大,不利于比较,因此所有LSCI均使用灰度图.

兔子肠系膜血管实验在上海市第六人民医院完成,实验符合动物实验伦理要求.实验示意图与成像流程如图3所示.

图3

图3   LSCI实验示意图与LSCI流程图

Fig.3   Experimental schematic diagram and flow chart of LSCI


3 LSCI血流实验结果

3.1 低分辨率照相机成像

首先使用8位像素深度照相机验证LSCI技术能监测血液流动.死亡前后兔子肠系膜血管流动散斑图及sLSCI如图4所示.从图中可以看出,死亡前后兔子肠系膜血管区域的衬比度有明显差异,本研究开发的LSCI技术可以监测动物血液流动.实验中sLSCI的可视化结果灰度值表示K值大小,灰度值越小,图像颜色越深,代表血液流动越快.

图4

图4   死亡前后散斑图像与sLSCI

Fig.4   Speckle images and sLSCI before and after death


选择了3个血管感兴趣区间(ROI)如图4(b)所示,通过sLSCI分别计算兔子死亡前与死亡后3个ROI区域内K的平均值与信噪比,如表1所示.K-lRSN,l表示兔子死亡前平均衬比度与信噪比, K-dRSN,d表示兔子死亡后平均衬比度与信噪比.

表1   兔子死亡前后肠系膜血管各感兴趣区间K的平均值与信噪比

Tab.1  $\bar{K}$ and SNR of K in ROI of mesenteric vessels in rabbit before and after death

ROI编号K-lK-dRSN,lRSN,d
ROI10.030 90.161 85.207 82.527 2
ROI20.029 90.141 84.104 33.694 0
ROI30.035 90.122 54.459 82.441 9

新窗口打开| 下载CSV


由表可知,兔子死亡前散斑图像的衬比度K明显小于死亡后散斑图像衬比度K,通过LSCI可以准确判断血管内是否有血液流动.

3.2 高灰度级照相机成像

受限于8位照相机低分辨率与16位照相机搭配镜头的最小对焦距离,将高分辨16位散斑图片转换成8位散斑图像,8位散斑图的计算结果记为8位sLSCI,其余LSCI均使用16位散斑图片.在照相机44fps拍摄的100张图像中,选择连续的20张,计算结果记为tLSCI,为理想状态的处理结果;实际处理中,图片的读取时间、目标与激光的波动都会减弱图片之间的相关性,因此在100张中均匀间隔选择20张,处理结果记为tLSCIv.为考虑扰动的tLSCI处理结果,使用k5计算sLSCI,sLSCI近似计算结果记为sLSCIa.不同计算方法处理得到的兔子肠系膜血管流动的可视化衬比度图片如图5所示.

图5

图5   16位2 048像素×2 048像素散斑图片不同计算方法LSCI

Fig.5   Different computational methods LSCI for 16-bit 2 048×2 048 pixels speckle images


图5所示,实验中激光照射在图像中心区域,实验中流动区域K均小于0.1,因此选择[0,0.1]区间凸显流动信息.图5(a)为处理前的原始图像,无法判断是否有血液流动,图5~图5(f)均能得到直观的血液流动信息.对比图5(b)图5(d)可知,8位sLSCI只能得到光照中心区域的流动信息,16位sLSCI则可以得到更大区域的流动信息.图5(c)中sLSCIa血流与静态组织区域的对比度低于图5(d)中sLSCI,图5(e)中tLSCI血流与静态组织区域的对比度高于图5(f)中的tLSCIv.最后,选取16个ROI对比分析不同方法的成像质量,记作ROIi, i=1, …, 16;其中,13个红色区域为血管,3个蓝色区域为静态组织,如图6(a)所示.

图6

图6   不同计算方法的ROI的 $\bar{K}$ 与SNR

Fig.6   $\bar{K}$ and SNR of ROIs with different computational methods LSCI


图5(e)中血流分布最清晰,因此以tLSCI为参考,计算其他组数据相对tLSCI的相关系数,如表2所示,sLSCI数值最接近tLSCI数值.图6(b)中不同计算方法$\bar{K}$分布趋势相同,均能反映流动状态;tLSCIv流动区域的$\bar{K}$相对tLSCI的$\bar{K}$整体偏大,其中,ROI6与ROI15$\bar{K}$接近,如图6(b)中绿色直线所示,意味着无法通过颜色深浅判断ROI6是否有流动,如图6(c)中红色与蓝色框所示.影响tLSCIv成像质量的主要因素是图像各点时间序列的相关性.

表2   不同方法下各感兴趣区间$\bar{K}$的相关系数与SNR的平均值

Tab.2  Correlation coefficient of $\bar{K}$ and average SNR in ROIs of different methods

参数取值
8位sLSCI16位sLSCItLSCItLSCIvsLSCIa
K-相关系数0.910 40.970 71.000 00.915 40.915 4
SNR的平均值4.861 96.037 15.781 45.902 81.318 8

新窗口打开| 下载CSV


结合表2,如图6(d)所示,利用SNR图判断各ROI成像质量,sLSCIa的SNR明显低于LSCI的其他方法;8位sLSCI的SNR平均低于16位sLSCI;结合3.1节中低分辨率8位LSCI的SNR,16位LSCI的SNR明显高于8位LSCI.

综上可知,tLSCIv的ROI6灰度与ROI15接近,且该区域成像SNR高,直观判断下该区域没有血液流动,与实际矛盾,易导致LSCI观察者误判.对比sLSCI,如图6(b)中红色直线所示,在光照中心区域质量优于tLSCIv.

通过对比8位与16位LSCI的SNR和对比度的结果,发现高灰度级照相机在成像质量上优于低灰度级照相机.对比16位图片不同方法LSCI的SNR与$\bar{K}$结果,发现sLSCI成像质量优于sLSCIa;理想情况下与sLSCI相比,tLSCI能在光照边缘区域显示更多细小血管.但实际应用中,考虑干扰对时间序列图像之间的相关性影响,sLSCI质量优于tLSCIv,因此,sLSCI的质量比tLSCI稳定.综上,高灰度级高分辨率sLSCI技术能够在成像质量方面接近tLSCI,在成像稳定性上超过tLSCI.

3.3 并行计算效率

LSCI图像处理并行计算使用CPU进行实时计算,CPU为Intel(R)Core(TM) i5-9300H CPU@2.40 GHz.记录LSCI图像串行、并行处理及近似算法处理100张图片的平均消耗时间,如图7所示.

图7

图7   实时监测中LSCI处理时间

Fig.7   LSCI processing time of real-time monitoring


图7可知,实时监测程序记录100张tLSCI计算(N=20),平均每张tLSCI时间为6 s;sLSCI图像处理并行计算能有效加速图像处理速度,计算时间约为串行的2/3;sLSCI近似计算时间约为串行sLSCI的1/4;同等分辨率下,8位图像计算稍快于16位图像;420万像素图像计算时间明显大于36万像素图片计算时间.因此可以认为空间分辨率及空间统计标准差的计算是制约sLSCI计算时间的主要原因.

4 结语

提出一种高灰度级高分辨率血流LSCI技术的并行计算处理方法.通过兔子肠系膜血管成像发现,高分辨率下散斑图像光照中心区域sLSCI能达到理想tLCSI(N=20)的成像效果.实际应用中,sLSCI避免了tLSCI因外界干扰和序列中各图像间较大延迟时间造成的图像质量下降.近似计算sLSCIa的计算时间虽然是串行计算时间sLSCI的1/4,但信噪比与对比度明显低于sLSCI.基于Python并行计算的sLSCI相对于串行计算的sLSCI,计算时间消耗减少1/3.实验表明,高灰度级高分辨率空间激光散斑并行计算图像满足临床实时监测需求.

参考文献

RAMIREZ-SAN-JUAN J C, MENDEZ-AGUILAR E, SALAZAR-HERMENEGILDO N, et al.

Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics

[J]. Biomedical Optics Express, 2013, 4(10): 1883-1889.

DOI:10.1364/BOE.4.001883      URL     [本文引用: 1]

BANDYOPADHYAY R, GITTINGS A S, SUH S S, et al.

Speckle-visibility spectroscopy: A tool to study time-varying dynamics

[J]. Review of Scientific Instruments, 2005, 76(9): 093110.

DOI:10.1063/1.2037987      URL     [本文引用: 1]

刘洪涛, 梁振宁, 胡文, .

基于局部特征点检测与匹配的微悬臂梁变形受力测量方法

[J]. 上海交通大学学报, 2013, 47(12): 1842-1847.

[本文引用: 1]

LIU Hongtao, LIANG Zhenning, HU Wen, et al.

A method for deformation and force measurement of micro-cantilever based on local feature point detecting and matching

[J]. Journal of Shanghai Jiao Tong University, 2013, 47(12): 1842-1847.

[本文引用: 1]

FERCHER A F, BRIERS J D.

Flow visualization by means of single-exposure speckle photography

[J]. Optics Communications, 1981, 37(5): 326-330.

DOI:10.1016/0030-4018(81)90428-4      URL     [本文引用: 1]

TOWLE E L, RICHARDS L M, KAZMI S M S, et al.

Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion

[J]. Neurosurgery, 2012, 71(5): 1023-1030.

DOI:10.1227/NEU.0b013e31826adf88      PMID:22843129      [本文引用: 1]

Assessment of the vasculature is critical for overall success in cranial vascular neurological surgery procedures. Although several methods of monitoring cortical perfusion intraoperatively are available, not all are appropriate or convenient in a surgical environment. Recently, 2 optical methods of care have emerged that are able to obtain high spatial resolution images with easily implemented instrumentation: indocyanine green (ICG) angiography and laser speckle contrast imaging (LSCI).To evaluate the usefulness of ICG and LSCI in measuring vessel perfusion.An experimental setup was developed that simultaneously collects measurements of ICG fluorescence and LSCI in a rodent model. A 785-nm laser diode was used for both excitation of the ICG dye and the LSCI illumination. A photothrombotic clot model was used to occlude specific vessels within the field of view to enable comparison of the 2 methods for monitoring vessel perfusion.The induced blood flow change demonstrated that ICG is an excellent method for visualizing the volume and type of vessel at a single point in time; however, it is not always an accurate representation of blood flow. In contrast, LSCI provides a continuous and accurate measurement of blood flow changes without the need of an external contrast agent.These 2 methods should be used together to obtain a complete understanding of tissue perfusion.

FREDRIKSSON I, LARSSON M.

On the equivalence and differences between laser Doppler flowmetry and laser speckle contrast analysis

[J]. Journal of Biomedical Optics, 2016, 21: 126018.

DOI:10.1117/1.JBO.21.12.126018      URL     [本文引用: 1]

MANNOH E A, THOMAS G, SOLÓRZANO C C, et al.

Intraoperative assessment of parathyroid viability using laser speckle contrast imaging

[J]. Scientific Reports, 2017, 7: 14798.

DOI:10.1038/s41598-017-14941-5      PMID:29093531      [本文引用: 1]

Post-surgical hypoparathyroidism and hypocalcemia are known to occur after nearly 50% of all thyroid surgeries as a result of accidental disruption of blood supply to healthy parathyroid glands, which are responsible for regulating calcium. However, there are currently no clinical methods for accurately identifying compromised glands and the surgeon relies on visual assessment alone to determine if any gland(s) should be excised and auto-transplanted. Here, we present Laser Speckle Contrast Imaging (LSCI) for real-time assessment of parathyroid viability. Taking an experienced surgeon's visual assessment as the gold standard, LSCI can be used to distinguish between well vascularized (n = 32) and compromised (n = 27) parathyroid glands during thyroid surgery with an accuracy of 91.5%. Ability to detect vascular compromise with LSCI was validated in parathyroidectomies. Results showed that this technique is able to detect parathyroid gland devascularization before it is visually apparent to the surgeon. Measurements can be performed in real-time and without the need to turn off operating room lights. LSCI shows promise as a real-time, contrast-free, objective method for helping reduce hypoparathyroidism after thyroid surgery.

MANNOH E A, PARKER L B, THOMAS G, et al.

Development of an imaging device for label-free parathyroid gland identification and vascularity assessment

[J]. Journal of Biophotonics, 2021, 14(6): e202100008.

[本文引用: 1]

HEEMAN W, STEENBERGEN W, DAM G V, et al.

Clinical applications of laser speckle contrast imaging: A review

[J]. Journal of Biomedical Optics, 2019, 24(8): 1-11.

DOI:10.1117/1.JBO.24.8.080901      PMID:31385481      [本文引用: 1]

When a biological tissue is illuminated with coherent light, an interference pattern will be formed at the detector, the so-called speckle pattern. Laser speckle contrast imaging (LSCI) is a technique based on the dynamic change in this backscattered light as a result of interaction with red blood cells. It can be used to visualize perfusion in various tissues and, even though this technique has been extensively described in the literature, the actual clinical implementation lags behind. We provide an overview of LSCI as a tool to image tissue perfusion. We present a brief introduction to the theory, review clinical studies from various medical fields, and discuss current limitations impeding clinical acceptance.

李晨曦, 陈文亮, 蒋景英, .

激光散斑衬比血流成像技术研究进展

[J]. 中国激光, 2018, 45(2): 92-101.

[本文引用: 1]

LI Chenxi, CHEN Wenliang, JIANG Jingying, et al.

Laser speckle contrast imaging on in vivo blood flow: A review

[J]. Chinese Journal of Lasers, 2018, 45(2): 92-101.

[本文引用: 1]

RICHARDS G J, BRIERS J D.

Capillary-blood-flow monitoring using laser speckle contrast analysis (LASCA): Improving the dynamic range

[J]. Proceedings of SPIE, 1997, 2981: 160-171.

[本文引用: 1]

CHENG H Y, YAN Y M, DUONG T Q.

Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging

[J]. Optics Express, 2008, 16(14): 10214-10219.

DOI:10.1364/oe.16.010214      PMID:18607429      [本文引用: 1]

Temporal-statistical analysis of laser-speckle image (TS-LSI) preserves the original spatial resolution, in contrast to conventional spatial-statistical analysis (SS-LSI). Concerns have been raised regarding the temporal independency of TS-LSI signals and its insensitivity toward stationary-speckle contamination. Our results from flow phantoms and in vivo rat retinas demonstrated that the TS-LSI signals are temporally statistically independent and TS-LSI minimizes stationary-speckle contamination. The latter is because the stationary speckle is "non-random" and thus non-ergodic where the temporal average of stationary speckle needs not equal its spatial ensemble average. TS-LSI detects blood flow in smaller blood vessels and is less susceptible to stationary-speckle artifacts.

MIAO P, REGE A, LI N, et al.

High resolution cerebral blood flow imaging by registered laser speckle contrast analysis

[J]. IEEE Transactions on Bio-Medical Engineering, 2010, 57(5): 1152-1157.

DOI:10.1109/TBME.2009.2037434      PMID:20142159      [本文引用: 1]

Laser speckle imaging (LSI) has been widely used for in vivo detecting cerebral blood flow (CBF) under various physiological and pathological conditions. So far, nearly all literature on in vivo LSI does not consider the influence of disturbances due to respiration and/or heart beating of animals. In this paper, we analyze how such physiologic motions affect the spatial resolution of the conventional laser speckle contrast analysis (LASCA). We propose a registered laser speckle contrast analysis (rLASCA) method which first registers raw speckle images with a 3 x 3 convolution kernel, normalized correlation metric and cubic B-spline interpolator, and then constructs the contrast image for CBF. rLASCA not only significantly improves the distinguishability of small vessels, but also efficiently suppresses the noises induced by respiration and/or heart beating. In an application of imaging the angiogenesis of rat's brain tumor, rLASCA outperformed the conventional LASCA in providing a much higher resolution for new small vessels. As a processing method for LSI, rLASCA can be directly applied to other LSI experiments where the disturbances from different sources (like respiration, heart beating) exist.

CHENG W M, ZHU X, CHEN X, et al.

Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow

[J]. IEEE Transactions on Medical Imaging, 2019, 38(7): 1726-1735.

DOI:10.1109/TMI.2019.2896007      PMID:30714912      [本文引用: 1]

Laser speckle contrast imaging (LSCI) is a full-field, noncontact imaging technology for mapping blood flow with high spatio-temporal resolution, in which the speckle contrast can be estimated either in spatial domain or temporal domain. Temporal LSCI (tLSCI) provides higher spatial resolution than spatial domain does. However, when the number of sampling frames is limited, it is difficult to obtain accurate blood flow velocity owing to the significant statistical noise. The widely used spatially averaged tLSCI (savg-tLSCI) usually requires a large number of sampling frames to obtain acceptable denoising performance. Here, based on the nonlocal filtering strategy of block-matching and three-dimensional transform-domain collaborative filtering (BM3D), Manhattan distance-based adaptive BM3D (MD-ABM3D) is proposed to effectively manage the complicated inhomogeneous noise in tLSCI image and improve the signal-to-noise ratio. Manhattan distance improves the accuracy of the block matching in strong noise, and the adaptive algorithm adapts to the inhomogeneous noise and estimates suitable parameters for improved denoising. MD-ABM3D improves 4.91 dB in peak signal-to-noise ratio relative to savg-tLSCI. It achieves stability for denoising tLSCI image with different temporal windows. The image-quality evaluation of MD-ABM3D for tLSCI (t = 20 frames) equals that of savg-tLSCI (t = 60 frames). It achieves high signal-to-noise ratio with a reduced number of sampling frames. A reduced number of sampling frames are more practical for biomedical applications. It also offers higher temporal resolution and less disturbance from the motion of the moving object.

YUAN S.

Sensitivity, noise and quantitative model of laser speckle contrast imaging

[D]. USA: Medford Tufts University, 2008.

[本文引用: 1]

SONG L P, ELSON D S.

Effect of signal intensity and camera quantization on laser speckle contrast analysis

[J]. Biomedical Optics Express, 2013, 4(1): 89-104.

DOI:10.1364/BOE.4.000089      PMID:23304650      [本文引用: 1]

Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view.

HULTMAN M, FREDRIKSSON I, LARSSON M, et al.

A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup

[J]. Journal of Biophotonics, 2018, 11(2): e201700069.

[本文引用: 1]

/