基于泊松融合数据增强的焊缝金相组织缺陷分类研究
|
白雄飞, 龚水成, 李雪松, 许博, 杨晓力, 王明彦
|
Defect Classification of Weld Metallographic Structure Based on Data Augmentation of Poisson Fusion
|
BAI Xiongfei, GONG Shuicheng, LI Xuesong, XU Bo, YANG Xiaoli, WANG Mingyan
|
|
表7 消融实验结果
|
Tab.7 Result of ablation experiment%
|
|
类型 | 模型 | 准确度 | | | | $\bar{F}_{1}^{ma}$ | Baseline | ResNet18 | 85.31 | 77.39 | 80.92 | 95.30 | 84.54 | 结构改进 | + ISPP | 93.67(+8.36) | 93.01(+15.62) | 90.02(+9.10) | 97.68(+2.38) | 93.57(+9.03) | | +LDPS | 96.37(+11.06) | 95.97(+18.58) | 94.72(+13.80) | 97.49(+2.19) | 96.06(+11.52) | | + ISPP +LDPS (ResNet18_PRO) | 97.34(+12.03) | 96.19(+18.83) | 96.24(+15.32) | 98.57(+3.27) | 97.00(+12.46) | 策略改进 | ResNet18 +ELR | 96.56(+11.25) | 96.91(+19.52) | 94.57(+13.65) | 97.61(+2.31) | 96.36(+11.82) | | ResNet18_PRO+ELR | 98.83(+13.52) | 98.88(+21.49) | 97.96(+17.04) | 99.45(+4.15) | 98.76(+14.22) |
|
|
|