基于LSTM与注意力结构的肺结节多特征抽取方法
|
倪扬帆, 杨媛媛, 谢哲, 郑德重, 王卫东
|
Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure
|
NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong
|
|
表4 已有方法与所提方法的结果比较
|
Tab.4 Comparison of results of related methods and proposed method
|
|
特征 | 文献[9] | | 文献[20] | | Res50+ATT+LSTM | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | 形状 | - | - | - | | - | - | 0.86 | | 71.21 | 51.99 | 0.70 | 边界 | 72.5 | 68.97 | - | | - | - | 0.92 | | 81.11 | 89.10 | 0.74 | 毛刺 | - | - | - | | - | - | 0.64 | | 94.31 | 97.65 | 0.50 | 分叶 | - | - | - | | - | - | 0.80 | | 95.66 | 97.88 | 0.50 | 内部成分 | - | - | - | | - | - | 0.02 | | 99.32 | 34.41 | 0.06 | 实性程度 | - | - | - | | - | - | 0.18 | | 78.88 | 71.28 | 0.48 | 钙化 | 90.8 | 84.74 | - | | - | - | 0.87 | | 92.21 | 95.12 | 0.31 | 恶性程度 | 84.2 | 78.64 | - | | - | - | 0.87 | | 86.61 | 68.11 | 0.59 |
|
|
|