基于LSTM与注意力结构的肺结节多特征抽取方法
|
倪扬帆, 杨媛媛, 谢哲, 郑德重, 王卫东
|
Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure
|
NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong
|
|
表3 各模型使用结节CT图像以及掩模图像进行多任务分类的结果比较
|
Tab.3 Results of different multi-task classification models taking nodule CT images and masks as input
|
|
分类特征 | Res50 | | OMoE | | Res50+LSTM | | Res50+ATT+Bi-LSTM | | Res50+ATT+LSTM | | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | | θ% | F1% | e | 形状 | 67.22 | 47.56 | 0.80 | | 68.23 | 47.66 | 0.81 | | 69.20 | 49.66 | 0.73 | | 70.98 | 51.15 | 0.68 | | 71.21 | 51.99 | 0.70 | 边界 | 78.66 | 87.59 | 0.82 | | 77.93 | 87.96 | 0.83 | | 79.20 | 87.59 | 0.75 | | 81.25 | 88.56 | 0.75 | | 81.11 | 89.10 | 0.74 | 毛刺 | 94.31 | 97.07 | 0.54 | | 94.31 | 97.10 | 0.54 | | 94.32 | 97.38 | 0.56 | | 94.31 | 97.42 | 0.53 | | 94.31 | 97.65 | 0.50 | 分叶 | 94.98 | 97.42 | 0.64 | | 94.98 | 97.43 | 0.64 | | 95.10 | 97.11 | 0.59 | | 95.12 | 97.89 | 0.52 | | 95.66 | 97.88 | 0.50 | 内部成分 | 99.33 | 34.36 | 0.03 | | 99.33 | 34.67 | 0.04 | | 99.33 | 35.01 | 0.06 | | 99.32 | 34.89 | 0.06 | | 99.32 | 34.41 | 0.06 | 实性程度 | 78.26 | 75.36 | 0.57 | | 78.01 | 67.05 | 0.62 | | 78.72 | 75.90 | 0.51 | | 78.77 | 71.56 | 0.58 | | 78.88 | 71.28 | 0.48 | 钙化 | 89.97 | 94.88 | 0.42 | | 89.96 | 94.71 | 0.43 | | 89.99 | 97.48 | 0.40 | | 92.29 | 95.15 | 0.37 | | 92.21 | 95.12 | 0.31 | 恶性程度 | 81.27 | 67.65 | 0.80 | | 80.60 | 66.29 | 0.83 | | 84.88 | 71.29 | 0.66 | | 86.59 | 78.05 | 0.54 | | 86.61 | 78.11 | 0.59 |
|
|
|