基于LSTM与注意力结构的肺结节多特征抽取方法
|
倪扬帆, 杨媛媛, 谢哲, 郑德重, 王卫东
|
Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure
|
NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong
|
|
表2 各模型仅使用结节CT图像进行多任务分类的结果比较
|
Tab.2 Results of different multi-task classification models taking nodule CT images as input
|
|
分类特征 | Res50 | | OMoE | | Res50+LSTM | | Res50+ATT+LSTM | | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | 形状 | 66.89 | 45.25 | 0.79 | | 67.22 | 46.52 | 0.82 | | 68.24 | 48.61 | 0.75 | | 70.01 | 50.97 | 0.69 | 边界 | 78.93 | 87.12 | 0.78 | | 78.26 | 87.22 | 0.85 | | 78.95 | 88.64 | 0.76 | | 79.21 | 88.01 | 0.80 | 毛刺 | 94.98 | 97.26 | 0.58 | | 93.97 | 96.89 | 0.57 | | 94.31 | 97.86 | 0.53 | | 94.32 | 97.38 | 0.53 | 分叶 | 94.98 | 97.42 | 0.67 | | 94.98 | 97.42 | 0.68 | | 95.00 | 97.46 | 0.62 | | 95.55 | 97.89 | 0.52 | 内部成分 | 99.33 | 34.53 | 0.03 | | 99.33 | 34.44 | 0.02 | | 99.33 | 34.81 | 0.07 | | 99.32 | 33.59 | 0.05 | 实性程度 | 68.56 | 73.30 | 0.59 | | 68.22 | 74.09 | 0.64 | | 75.57 | 75.67 | 0.57 | | 78.62 | 71.94 | 0.48 | 钙化 | 88.63 | 94.55 | 0.32 | | 84.61 | 91.84 | 0.41 | | 89.97 | 94.71 | 0.35 | | 90.00 | 94.93 | 0.33 | 恶性程度 | 83.27 | 66.89 | 0.77 | | 79.60 | 66.92 | 0.90 | | 84.60 | 67.95 | 0.70 | | 85.10 | 75.98 | 0.63 |
|
|
|