基于特征金字塔卷积循环神经网络的故障诊断方法
|
刘秀丽, 徐小力
|
A Fault Diagnosis Method Based on Feature Pyramid CRNN Network
|
LIU Xiuli, XU Xiaoli
|
|
表6 DNN、CNN和LSTM诊断准确率
|
Tab.6 Diagnostic accuracy of DNN, CNN, and LSTM
|
|
组号 | 模型 | ε/% | K=1 | K=2 | K=3 | K=4 | K=5 | 1 | LSTM | 95.91 | 95.23 | 95.02 | 96.14 | 95.06 | | CNN | 85.03 | 87.10 | 87.05 | 86.21 | 86.69 | | DNN | 59.87 | 65.35 | 63.54 | 61.52 | 63.18 | 2 | LSTM | 95.35 | 96.26 | 96.19 | 95.33 | 96.16 | | CNN | 84.92 | 86.97 | 87.80 | 86.49 | 87.35 | | DNN | 64.14 | 61.47 | 65.20 | 62.80 | 58.48 | 3 | LSTM | 95.88 | 94.62 | 96.24 | 95.56 | 95.56 | | CNN | 87.17 | 86.92 | 87.55 | 85.91 | 84.34 | | DNN | 59.42 | 63.64 | 65.38 | 62.00 | 63.91 |
|
|
|