基于隐变量后验生成对抗网络的不平衡学习
何新林, 戚宗锋, 李建勋

Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior
HE Xinlin, QI Zongfeng, LI Jianxun
表3 基于数据过采样的迁移学习分类器指标
Tab.3 Metrics of transfer learning classifier based on data oversampling
指标 数据集 ROS SMOTE Border MWMOTE ADASYN TrAdaboost LGOS
Recall phoneme 0.8266 0.8333 0.8466 0.8400 0.8500 0.8433 0.8633
satimage 0.9512 0.9390 0.9390 0.9512 0.9634 0.9512 0.9756
pen 1.0000 1.0000 0.9907 0.9953 1.0000 0.9953 1.0000
wine 0.5166 0.6166 0.6277 0.6388 0.5944 0.6944 0.7722
letter 0.9152 0.9186 0.9152 0.9220 0.9322 0.9220 0.9491
avila 0.9862 0.9862 0.9862 0.9954 0.9862 0.9954 1.0000
F-measure phoneme 0.8378 0.8361 0.8396 0.84 0.8388 0.8281 0.8477
satimage 0.9512 0.9565 0.9506 0.9512 0.9634 0.9512 0.9696
pen 0.9953 0.9976 0.9930 0.9976 0.9953 0.9976 1.0000
wine 0.5942 0.6646 0.6420 0.6301 0.6114 0.5868 0.6698
letter 0.9540 0.9559 0.9523 0.9560 0.9649 0.9560 0.9705
avila 0.9930 0.9907 0.9930 0.9954 0.9907 0.9954 1.0000
G-mean phoneme 0.8832 0.8843 0.8895 0.8879 0.8901 0.8835 0.8976
satimage 0.9728 0.9678 0.9672 0.9728 0.9797 0.9728 0.9858
pen 0.9994 0.9997 0.9951 0.9976 0.9994 0.9976 1.0000
wine 0.7058 0.7700 0.7711 0.7739 0.7490 0.7870 0.8402
letter 0.9565 0.9583 0.9564 0.9599 0.9655 0.9599 0.9739
avila 0.9930 0.9928 0.9930 0.9974 0.9928 0.9974 1.0000
AUC phoneme 0.8851 0.8859 0.8906 0.8892 0.8910 0.8845 0.8983
satimage 0.9731 0.9682 0.9676 0.9731 0.9798 0.9731 0.9859
pen 0.9994 0.9997 0.9951 0.9976 0.9994 0.9976 1.0000
wine 0.7404 0.7891 0.7875 0.7881 0.7690 0.7932 0.8432
letter 0.9574 0.9591 0.9573 0.9607 0.9661 0.9607 0.9743
avila 0.9931 0.9928 0.9931 0.9974 0.9928 0.9974 1.0000