基于隐变量后验生成对抗网络的不平衡学习
|
何新林, 戚宗锋, 李建勋
|
Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior
|
HE Xinlin, QI Zongfeng, LI Jianxun
|
|
表2 基于数据过采样的决策树分类器指标
|
Tab.2 Metrics of decision tree classifier based on data oversampling
|
|
指标 | 数据集 | 原始数据 | ROS | SMOTE | Border | MWMOTE | ADASYN | LGOS | Recall | phoneme | 0.7566 | 0.7396 | 0.7953 | 0.7976 | 0.8023 | 0.8046 | 0.8433 | | satimage | 0.9146 | 0.9365 | 0.9414 | 0.9268 | 0.9512 | 0.9524 | 0.9634 | | pen | 0.9583 | 0.9819 | 0.9814 | 0.9814 | 0.9856 | 0.9625 | 0.9861 | | wine | 0.6000 | 0.5627 | 0.6511 | 0.6188 | 0.6533 | 0.6583 | 0.6944 | | letter | 0.9016 | 0.8759 | 0.8983 | 0.8769 | 0.9037 | 0.8586 | 0.9118 | | avila | 0.9357 | 0.9394 | 0.9564 | 0.9784 | 0.9422 | 0.9697 | 0.9816 | F-measure | phoneme | 0.7479 | 0.7394 | 0.7528 | 0.7602 | 0.7627 | 0.7564 | 0.7586 | | satimage | 0.9146 | 0.9411 | 0.9374 | 0.9319 | 0.9414 | 0.9398 | 0.9461 | | pen | 0.9430 | 0.9718 | 0.9586 | 0.9676 | 0.9755 | 0.9563 | 0.9681 | | wine | 0.6084 | 0.5885 | 0.5759 | 0.5605 | 0.5945 | 0.5722 | 0.5966 | | letter | 0.8721 | 0.8898 | 0.8646 | 0.8571 | 0.8772 | 0.8519 | 0.8936 | | avila | 0.9400 | 0.9483 | 0.9411 | 0.9576 | 0.9280 | 0.9538 | 0.9511 | G-mean | phoneme | 0.8241 | 0.8157 | 0.8356 | 0.8398 | 0.8422 | 0.8394 | 0.8486 | | satimage | 0.9521 | 0.9650 | 0.9669 | 0.9596 | 0.9718 | 0.9721 | 0.9778 | | pen | 0.9749 | 0.9888 | 0.9871 | 0.9881 | 0.9908 | 0.9783 | 0.9902 | | wine | 0.7510 | 0.7286 | 0.7661 | 0.7483 | 0.7720 | 0.7681 | 0.7897 | | letter | 0.9432 | 0.9324 | 0.9409 | 0.9301 | 0.9446 | 0.9207 | 0.9500 | | avila | 0.9642 | 0.9668 | 0.9735 | 0.9853 | 0.9656 | 0.9810 | 0.9859 | AUC | phoneme | 0.8271 | 0.8197 | 0.8366 | 0.8410 | 0.8432 | 0.8402 | 0.8486 | | satimage | 0.9529 | 0.9655 | 0.9673 | 0.9602 | 0.9720 | 0.9724 | 0.9779 | | pen | 0.9751 | 0.9888 | 0.9871 | 0.9881 | 0.9909 | 0.9785 | 0.9902 | | wine | 0.7700 | 0.7533 | 0.7765 | 0.7621 | 0.7829 | 0.7775 | 0.7963 | | letter | 0.9442 | 0.9342 | 0.9419 | 0.9317 | 0.9456 | 0.9230 | 0.9508 | | avila | 0.9646 | 0.9672 | 0.9737 | 0.9854 | 0.9659 | 0.9811 | 0.9860 |
|
|
|