基于隐变量后验生成对抗网络的不平衡学习
何新林, 戚宗锋, 李建勋

Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior
HE Xinlin, QI Zongfeng, LI Jianxun
表2 基于数据过采样的决策树分类器指标
Tab.2 Metrics of decision tree classifier based on data oversampling
指标 数据集 原始数据 ROS SMOTE Border MWMOTE ADASYN LGOS
Recall phoneme 0.7566 0.7396 0.7953 0.7976 0.8023 0.8046 0.8433
satimage 0.9146 0.9365 0.9414 0.9268 0.9512 0.9524 0.9634
pen 0.9583 0.9819 0.9814 0.9814 0.9856 0.9625 0.9861
wine 0.6000 0.5627 0.6511 0.6188 0.6533 0.6583 0.6944
letter 0.9016 0.8759 0.8983 0.8769 0.9037 0.8586 0.9118
avila 0.9357 0.9394 0.9564 0.9784 0.9422 0.9697 0.9816
F-measure phoneme 0.7479 0.7394 0.7528 0.7602 0.7627 0.7564 0.7586
satimage 0.9146 0.9411 0.9374 0.9319 0.9414 0.9398 0.9461
pen 0.9430 0.9718 0.9586 0.9676 0.9755 0.9563 0.9681
wine 0.6084 0.5885 0.5759 0.5605 0.5945 0.5722 0.5966
letter 0.8721 0.8898 0.8646 0.8571 0.8772 0.8519 0.8936
avila 0.9400 0.9483 0.9411 0.9576 0.9280 0.9538 0.9511
G-mean phoneme 0.8241 0.8157 0.8356 0.8398 0.8422 0.8394 0.8486
satimage 0.9521 0.9650 0.9669 0.9596 0.9718 0.9721 0.9778
pen 0.9749 0.9888 0.9871 0.9881 0.9908 0.9783 0.9902
wine 0.7510 0.7286 0.7661 0.7483 0.7720 0.7681 0.7897
letter 0.9432 0.9324 0.9409 0.9301 0.9446 0.9207 0.9500
avila 0.9642 0.9668 0.9735 0.9853 0.9656 0.9810 0.9859
AUC phoneme 0.8271 0.8197 0.8366 0.8410 0.8432 0.8402 0.8486
satimage 0.9529 0.9655 0.9673 0.9602 0.9720 0.9724 0.9779
pen 0.9751 0.9888 0.9871 0.9881 0.9909 0.9785 0.9902
wine 0.7700 0.7533 0.7765 0.7621 0.7829 0.7775 0.7963
letter 0.9442 0.9342 0.9419 0.9317 0.9456 0.9230 0.9508
avila 0.9646 0.9672 0.9737 0.9854 0.9659 0.9811 0.9860