Mechanical Engineering

Experimental Study on Characteristics of Bubble Point Pressure of Double-Layer Metal Screen

  • LIN Yilin ,
  • WANG Ye ,
  • CHEN Chengcheng ,
  • CAI Aifeng ,
  • YANG Guang ,
  • WU Jingyi
Expand
  • Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-08-21

  Revised date: 2023-10-03

  Accepted date: 2023-10-30

  Online published: 2023-11-16

Abstract

The screen channel liquid acquisition device (LAD) has advantages in terms of energy conservation, stability, and efficiency, making it a promising application candidate in the orbit storage management system of cryogenic propellants. Improving the bubble point pressure of the screen to adapt to the low surface tension characteristics of cryogenic propellants is an important area of research. However, the increase in bubble breaking pressure of single-layer mesh screens is constrainted by material strength, transportation efficiency, and system weight, posing significant challenges. A method of forming multi-layer mesh screens through diffusion bonding to enhance the bubble point pressure of the screen is proposed. Taking a double-layer screen as an example, experiments of bubble point pressure measurement are conducted and compared with the examination of single-layer screen. The results show that the bubble point pressure increases by 10% to 20% on the double-layer mesh screen. Additionly, the experiments on the screens with different inter-layer angles are also conducted, revealing that the inter-layer angles have no significant effect on the bubble point pressure. These findings provide a new direction for design of porous screens in liquid acquisition devices.

Cite this article

LIN Yilin , WANG Ye , CHEN Chengcheng , CAI Aifeng , YANG Guang , WU Jingyi . Experimental Study on Characteristics of Bubble Point Pressure of Double-Layer Metal Screen[J]. Journal of Shanghai Jiaotong University, 2025 , 59(5) : 628 -636 . DOI: 10.16183/j.cnki.jsjtu.2023.405

References

[1] WANG Z, YANG G, WANG Y, et al. A three-dimensional flow model of screen channel liquid acquisition devices for propellant management in microgravity[J]. npj Microgravity, 2022, 8: 28.
[2] FESTER A D, VILLARS J A, UNEY E P. Surface tension propellant acquisition system technology for space shuttle reaction control tanks[J]. Journal of Spacecraft and Rockets, 1976, 13(9): 522-527.
[3] 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009.
  WANG Lei, LI Yanzhong, MA Yuan, et al. On-orbitrefilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009.
[4] 马原, 厉彦忠, 王磊, 等. 低温推进剂在轨加注技术与方案研究综述[J]. 宇航学报, 2016, 37(3): 245-252.
  MA Yuan, LI Yanzhong, WANG Lei, et al. Review on on-orbit refueling techniques and schemes of cryogenic propellants[J]. Journal of Astronautics, 2016, 37(3): 245-252.
[5] 王磊, 厉彦忠, 张少华, 等. 低温推进剂空间管理技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 978-988.
  WANG Lei, LI Yanzhong, ZHANG Shaohua, et al. Research progress and outlooks of cryogenic propellant space management technologies[J]. Journal of Astronautics, 2020, 41(7): 978-988.
[6] 马原, 陈虹, 邢科伟, 等. 低温推进剂网幕通道式液体获取装置性能研究进展[J]. 制冷学报, 2019, 40(3): 1-7.
  MA Yuan, CHEN Hong, XING Kewei, et al. Review of screen channel liquid acquisition device for cryogenic propellants[J]. Journal of Refrigeration, 2019, 40(3): 1-7.
[7] HARTWIG J, DARR S. Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J]. Applied Thermal Engineering, 2014, 66(1/2): 548-562.
[8] SAVAS J A, HARTWIG W J, MODER P J. Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J]. International Journal of Heat and Mass Transfer, 2014, 74(7): 403-413.
[9] HARTWIG W J, KAMOTANI Y. The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 99: 31-43.
[10] HARTWIG J, DARR S, MEYERHOFER P, et al. EDU liquid acquisition device outflow tests in liquid hydrogen: Experiments and analytical modeling[J]. Cryogenics, 2017, 87: 85-95.
[11] HARTWIG J, CHATO D, MCQUILLEN J, et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics, 2014, 64: 295-306.
[12] HARTWIG J, MCQUILLEN J. Analysis of screen channel LAD bubble point rests in liquid methane at elevated temperature[C]// 50th Aerospace Sciences Meeting. Reston, USA: American Institute of Aeronautics and Astronautics, 2012: 1-10.
[13] HARTWIG J, MCQUILLEN J. Screen channel liquid-acquisition device bubble point tests in liquid methane[J]. Journal of Thermophysics and Heat Transfer, 2014, 29(2): 364-375.
[14] HARTWIG J, MCQUILLEN J, JURNS J. Screen channel liquid-acquisition-device bubble point tests in liquid oxygen[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(2): 353-363.
[15] HARTWIG J. Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J]. Cryogenics, 2016, 74: 95-105.
[16] CAMAROTTI C, DENG O, DARR S, et al. Room temperature bubble point, flow-through screen, and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering, 2019, 149: 1170-1185.
[17] CHRISTIAN H, GERSTMANN J. Study on the gas retention capability of metallic screens[C]// 5th European Conference for Aeronautics Sciences. Munich, Germany: DLR, 2013: 1-13.
[18] 马原, 孙靖阳, 厉彦忠, 等. 增压速率对多孔金属筛网泡破压力影响的实验研究[J]. 西安交通大学学报, 2021, 55(11): 192-198.
  MA Yuan, SUN Jingyang, LI Yanzhong, et al. Experimental study on the effects of pressurization rate on bubble point pressure of porous metallic screens[J]. Journal of Xi’an Jiaotong University, 2021, 55(11): 192-198.
[19] 周勇瑞, 朱庆春, 耑锐, 等. 通道式液体获取装置筛网低温力学特性研究[J]. 低温与超导, 2021, 49(11): 25-31.
  ZHOU Yongrui, ZHU Qingchun, ZHUAN Rui, et al. Study on cryogenic mechanical properties of screen mesh for channel liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(11): 25-31.
[20] 王晔, 张婉雨, 汪彬, 等. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110.
  WANG Ye, ZHANG Wanyu, WANG Bin, et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110.
[21] PAYNTER H. Acquisition/expulsion system for earth orbital propulsion system, Vol.II[DB/OL]. (1973-10-01) [2023-07-01]. https://ntrs.nasa.gov/citations/19740004413 .
[22] CONRATH M, SMIYUKHA Y, FUHRMANN E, et al. Double porous screen element for gas-liquid phase separation[J]. International Journal of Multiphase Flow, 2013, 50(Complete): 1-15.
[23] 王晔. 网幕通道式液体获取装置中低温推进剂流动机理及相分离特性研究[D]. 上海: 上海交通大学, 2022.
  WANG Ye. Flow and phase separation of cryogenic propellants in screen channel liquid acquisition devices[D]. Shanghai: Shanghai Jiao Tong University, 2022.
[24] CONRATH M, DREYER M. Gas breakthrough at a porous screen[J]. International Journal of Multiphase Flow, 2012, 42: 29-41.
[25] HARTWIG W J, KAMOTANI Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 101: 502-516.
[26] HARTWIG W J, MANN JR J A. A predictive bubble point pressure model for porous liquid acquisition device screens[J]. Journal of Porous Media, 2014, 17(7): 587-600.
[27] 邱惠中. 扩散焊接及其在航空航天领域的应用[J]. 宇航材料工艺, 1997(4): 27-32.
  QIU Huizhong. Diffusion welding and its application in aerospace[J]. Aerospace Materials and Technology, 1997(4): 27-32.
[28] 高强, 郭建亭, 刘午, 等. TiAl合金与42CrMo扩散钎焊的界面组织及形成机理[J]. 航空材料学报, 2003(Sup.1): 51-54.
  GAO Qiang, GUO Jianting, LIU Wu, et al. The microstructure and forming mechanism of diffusion brazing interface of TiAl alloy and 42CrMo[J]. Journal of Aeronautical Meterials, 2003(Sup.1): 51-54.
[29] 刘赛. 毛细上升与贾敏效应的理论与实验研究[D]. 山东: 中国石油大学, 2020.
  LIU Sai. Theoretical and experimental studies of capillary rise and Jamin effect[D]. Shandong: China University of Petroleum, 2020.
Outlines

/