Journal of Shanghai Jiaotong University >
Participation of Energy Storage Batteries in Primary Frequency Control for Power Grid Considering Dynamic Frequency Inertia Characteristics
Received date: 2023-06-19
Revised date: 2023-08-29
Accepted date: 2023-10-09
Online published: 2023-10-25
The inertial of the system and the maximum frequency deviation caused by the energy storage batteries when participating in grid frequency regulation need to be improved. Virtual synchronous generator control (VSG) for grid side converter is expected to improve the performance of storage battery energy participation in grid primary frequency regulation. Therefore, participation of energy storage batteries in primary frequency control for power grid is proposed considering dynamic frequency inertia characteristics. To utilize the inertial support and primary frequency regulation capability of the energy storage batteries for the grid, an additional active power module is constructed, and the active power generated by the virtual inertial control and droop control strategies of the energy storage batteries are used as additional power for variable rotor inertial control and output feedback model predictive control, respectively. For the mismatch between the inertia characteristics of the virtual synchronous machine and the grid demand, a variable rotor inertia control strategy considering system frequency deviation and system frequency change rate is designed to realize the real-time adjustment of rotor inertia to the system frequency. The output feedback model prediction control of VSG is further proposed to achieve dynamic prediction and compensation of system frequency deviation by establishing a feedback channel between rotor angular frequency increment and torque increment. A comparative analysis with three existing control strategies shows that the control strategy proposed can make full use of the frequency regulation capability of the energy storage battery and VSG to effectively reduce the frequency deviation and frequency variation rate of the grid.
CAI Zhenhua , LI Canbing , YANG Tongguang , WEI Juan , GE Rui , LI Lixiong . Participation of Energy Storage Batteries in Primary Frequency Control for Power Grid Considering Dynamic Frequency Inertia Characteristics[J]. Journal of Shanghai Jiaotong University, 2024 , 58(12) : 1946 -1956 . DOI: 10.16183/j.cnki.jsjtu.2023.257
[1] | 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. |
WANG Tao, ZHU Ziqiang, NIAN Heng. Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. | |
[2] | MULLER S, DEICKE M, DE DONCKER R W. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Applications Magazine, 2002, 8(3): 26-33. |
[3] | 韩金龙, 袁枭添, 江晗, 等. 基于状态反馈精确线性化的双馈异步风机最优控制策略[J]. 中国电机工程学报, 2024, 44(9): 3508-3518. |
HAN Jinlong, YUAN Xiaotian, JIANG Han, et al. Optimal control of doubly fed induction generator based on feedback linearization[J]. Proceedings of the CSEE, 2024, 44(9): 3508-3518. | |
[4] | 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1694. |
WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1694. | |
[5] | 刘新宇, 逯芯妍, 曾龙, 等. 双馈风电场并网抑制频率振荡控制策略[J]. 上海交通大学学报, 2022, 56(3): 303-311. |
LIU Xinyu, LU Xinyan, ZENG Long, et al. Control strategies for suppressing frequency oscillation of doubly-fed wind farms connected to grid[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 303-311. | |
[6] | 唐升卫, 李世明, 胡春潮, 等. 基于频率反馈锁相的双馈感应风力发电机频率稳定控制方法[J]. 可再生能源, 2022, 40(4): 520-526. |
TANG Shengwei, LI Shiming, HU Chunchao, et al. Frequency stability control of DFIG-WTs based on frequency feedback phase-locking method[J]. Renewable Energy Resources, 2022, 40(4): 520-526. | |
[7] | MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. |
[8] | RAMTHARAN G, JENKINS N, EKANAYAKE J B. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation, 2007, 1(1): 3-9. |
[9] | 赵晶晶, 吕雪, 符杨, 等. 基于双馈感应风力发电机虚拟惯量和桨距角联合控制的风光柴微电网动态频率控制[J]. 中国电机工程学报, 2015, 35(15): 3815-3822. |
ZHAO Jingjing, Lü Xue, FU Yang, et al. Dynamic frequency control strategy of wind/photovoltaic/diesel microgrid based on DFIG virtual inertia control and pitch angle control[J]. Proceedings of the CSEE, 2015, 35(15): 3815-3822. | |
[10] | 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25. |
ZHANG Zhaosui, SUN Yuanzhang, LI Guojie, et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35(17): 20-25. | |
[11] | 魏娟, 黎灿兵, 黄晟, 等. 大规模风电场高电压穿越控制方法研究综述[J]. 上海交通大学学报, 2024, 58(6): 783-797. |
WEI Juan, LI Canbing, HUANG Sheng, et al. Review on high voltage ride-through control method of large-scale wind farm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 783-797. | |
[12] | YANG Y, LI H, AICHHORN A, et al. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 982-991. |
[13] | ZHANG J W, ZHANG N, GE Y. Energy storage placements for renewable energy fluctuations: A practical study[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4916-4927. |
[14] | MIAO L, WEN J Y, XIE H L, et al. Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 2732-2742. |
[15] | 刘传斌, 矫文书, 吴秋伟, 等. 基于模型预测控制的风储联合电场参与电网二次调频策略[J]. 上海交通大学学报, 2024, 58(1): 91-101. |
LIU Chuanbin, JIAO Wenshu, WU Qiuwei, et al. Strategy of wind-storage combined system participating in power system secondary frequency regulation based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 91-101. | |
[16] | 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. |
LIU Ju, YAO Wei, WEN Jinyu, et al. A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. | |
[17] | 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. |
DENG Xia, SUN Wei, XIAO Haiwei. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. | |
[18] | FATHI A, SHAFIEE Q, BEVRANI H. Robust frequency control of microgrids using an extended virtual synchronous generator[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6289-6297. |
[19] | 陈来军, 王任, 郑天文, 等. 基于参数自适应调节的虚拟同步发电机暂态响应优化控制[J]. 中国电机工程学报, 2016, 36(21): 5724-5731. |
CHEN Laijun, WANG Ren, ZHENG Tianwen, et al. Optimal control of transient response of virtual synchronous generator based on adaptive parameter adjustment[J]. Proceedings of the CSEE, 2016, 36(21): 5724-5731. | |
[20] | 宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37(2): 412-424. |
SONG Qiong, ZHANG Hui, SUN Kai, et al. Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37(2): 412-424. | |
[21] | WANG R, CHEN L J, ZHENG T W, et al. VSG-based adaptive droop control for frequency and active power regulation in the MTDC system[J]. CSEE Journal of Power & Energy Systems, 2017, 3(3): 260-268. |
[22] | ZHANG Q, LI Y, DING Z W, et al. Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 6007-6018. |
[23] | 孙亮, 杨晓飞, 孙立国, 等. 基于改进虚拟同步发电机的多逆变器频率无差控制策略[J]. 电力系统保护与控制, 2021, 49(11): 18-27. |
SUN Liang, YANG Xiaofei, SUN Liguo, et al. Frequent deviation-free control for microgrid multi-inverters based on improving a virtual synchronous generator[J]. Power System Protection & Control, 2021, 49(11): 18-27. | |
[24] | 付华, 刘公权, 齐晨飞, 等. 计及微电网黑启动的虚拟同步发电机调频策略[J]. 电力系统保护与控制, 2020, 48(14): 59-68. |
FU Hua, LIU Gongquan, QI Chenfei, et al. Frequency regulation strategy of a virtual synchronous generator-based microgrid considering the black start process[J]. Power System Protection & Control, 2020, 48(14): 59-68. | |
[25] | 李旭, 罗嘉, 丁勇, 等. 辅助重型燃气轮机黑启动的大容量储能系统控制技术及其应用[J]. 中国电机工程学报, 2022, 42(3): 1069-1081. |
LI Xu, LUO Jia, DING Yong, et al. Control technology and application of large-scale energy storage system assisting black start of heavy duty gas turbine[J]. Proceedings of the CSEE, 2022, 42(3): 1069-1081. | |
[26] | 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-141. |
GAO Jianrui, LI Guojie, WANG Keyou, et al. Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of Electric Power Systems, 2020, 44(4): 134-141. | |
[27] | 李德胜, 李国策, 刘博. 基于虚拟同步发电机控制技术的V2G系统研究[J]. 电力系统保护与控制, 2021, 49(7): 127-133. |
LI Desheng, LI Guoce, LIU Bo. Research on V2G system based on virtual synchronous generator control technology[J]. Power System Protection & Control, 2021, 49(7): 127-133. |
/
〈 |
|
〉 |