Mechanical Engineering

Life Analysis of Wear Fatigue Competition Failure Mechanism of Main Bearing of Boring Machine

  • NA Pengyue ,
  • WU Zhen ,
  • LIU Qi ,
  • HUO Junzhou
Expand
  • School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

Received date: 2023-07-14

  Revised date: 2023-09-03

  Accepted date: 2023-10-12

  Online published: 2023-10-26

Abstract

The main bearing of a tunneling machine is prone to premature failure under the influence of multiple factors such as wear and fatigue during service, making it difficult to predict its lifetime. In order to calculate the lifespan of the main bearing accurately, a life model is proposed that incorporates a fatigue-wear competition failure mechanism from the failure form. First, a bearing life model based on the continuous damage mechanics theory and the wear theory with surface roughness modification is proposed, and the competitive failure mechanism of bearing fatigue and wear is defined. Then, a finite element model is established by using the APDL software to simulate the contact between rollers and raceways, which helps identify the roller raceway where the bearing experiences initial failure, enabling the numerical solution of the life model. Finally, the analysis of the changes in contact stress and shear stress reveals that, during the first nine cycles, wear causes a decrease in contact stress, which suppresses fatigue failure, and extendes the bearing life. However, starting from the tenth cycle, contact stress increases, and wear accelerates the occurrence of fatigue failure. By considering the interaction of fatigue and wear, the proposed life model better reflects the actual situation.

Cite this article

NA Pengyue , WU Zhen , LIU Qi , HUO Junzhou . Life Analysis of Wear Fatigue Competition Failure Mechanism of Main Bearing of Boring Machine[J]. Journal of Shanghai Jiaotong University, 2025 , 59(5) : 675 -683 . DOI: 10.16183/j.cnki.jsjtu.2023.319

References

[1] 洪开荣, 杜彦良, 陈馈, 等. 中国全断面隧道掘进机发展历程、成就及展望[J]. 隧道建设(中英文), 2022, 42(5): 739-756.
  HONG Kairong, DU Yanliang, CHEN Kui, et al. Development history, achievements, and prospects of full face tunnel boring machines in china[J]. Tunnel Construction, 2022, 42(5): 739-756.
[2] 刘雪源, 李磊, 孙海波, 等. 盾构主轴承典型失效案例分析[J]. 建筑机械化, 2022, 43(3): 73-75.
  LIU Xueyuan, LI Lei, SUN Haibo, et al. Analysis of typical failure cases of shield tunneling main bearings[J]. Construction Mechanization, 2022, 43(3): 73-75.
[3] 靳东亮, 王高峰, 程永龙, 等. 大型掘进机主驱动轴承系统失效风险评估[J]. 轴承, 2023(12): 86-91.
  JIN Dongliang, WANG Gaofeng, CHENG Yong-long, et al. Risk assessment of failure in the main drive bearing system of large tunneling machines[J]. Bearing, 2023(12): 86-91.
[4] 宿月文, 陈渭, 朱爱斌, 等. 滑动磨损过程有限元分析及销磨损预测[J]. 中国机械工程, 2009, 20(13): 1573-1576.
  SU Yuewen, CHEN Wei, ZHU Aibin, et al. Finite element analysis of sliding wear process and prediction of pin wear[J]. China Mechanical Engineering, 2009, 20(13): 1573-1576.
[5] 高恒强, 蔡红娟, 蔡苗. 基于Archard修正模型的角接触球轴承磨损有限元分析[J]. 机床与液压, 2018, 46(15): 159-164.
  GAO Hengqiang, CAI Hongjuan, CAI Miao. Finite element analysis of angular contact ball bearing wear based on archard modified model[J]. Mach Tool Hydrau, 2018, 46(15): 159-164.
[6] 牛荣军, 洛瑞东, 王玉飞, 等. 考虑磨损影响的角接触球轴承动力学特性研究[J]. 振动与冲击, 2022, 41(18): 84-93.
  NIU Rongjun, LUO Ruidong, WANG Yufei, et al. Study on the dynamic characteristics of angular contact ball bearings considering wear effects[J]. Journal of Vibration and Shock, 2022, 41(18): 84-93.
[7] BOSE K, RAMKUMAR P. Finite element method based sliding wear prediction of steel-on-steel contacts using extrapolation techniques[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(10): 1446-1463.
[8] TOH S M, ASHKANFAR A, RUSSEL E. Computational method for bearing surface wear prediction in total hip replacements[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119: 104507.
[9] BASTOLA A, DAVID S, DANIELE D. Three-dimensional finite element simulation and experimental validation of sliding wear[J]. Wear, 2022(4): 504-505.
[10] 韩清凯, 云向河, 李宁, 等. 大型滚动轴承故障诊断及寿命评估技术进展[J]. 轴承, 2021(9): 1-13.
  HAN Qingkai, YUN Xianghe, LI Ning, et al. Progress in fault diagnosis and life assessment technology for large rolling bearings[J]. Bearing, 2021(9): 1-13.
[11] ABDULLAH M, KHAN Z. A multiscale overview of modelling rolling cyclic fatigue in bearing elements[J]. Materials, 2022, 15(17): 58-85.
[12] 张杰毅, 陈果, 谢阶栋, 等. 球轴承接触疲劳寿命预估的损伤力学-有限元法[J]. 航空动力学报, 2019, 34(10): 2246-2255.
  ZHANG Jieyi, CHEN Guo, XIE Jiedong, et al. Damage mechanics finite element method for predicting contact fatigue life of ball bearings[J]. Journal of Aerospace Power, 2019, 34(10): 2246-2255.
[13] SHEN F, ZHOU K. An elasto-plastic-damage model for initiation and propagation of spalling in rolling bearings[J]. International Journal of Mechanical Sciences, 2019, 161: 105058.
[14] WEI G, MA T, CAO H, et al. Numerical analysis of rolling contact fatigue crack initiation considering material microstructure[J]. Engineering Failure Analysis, 2022, 138: 106394.
[15] AKHIL A, SADEGHI F. A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue[J]. Tribology International, 2019, 140: 105845.
[16] PARK J, LEE K, KANG J H, et al. Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: Model development and validation of rolling contact fatigue behavior[J]. International Journal of Plasticity, 2021, 143: 103025.
[17] AKHIL V, SADEGHI F. Rolling contact fatigue of coupled EHL and anisotropic polycrystalline materials[J]. Tribology International, 2022, 169: 107479.
[18] HWANG S, LEE N, KIM N. Experiment and numerical study of wear in cross roller thrust bearings[J]. Lubricants, 2015, 3(2): 447-458.
[19] 周鹏举. YRT转台轴承摩擦力矩特性研究[D]. 河南: 河南科技大学, 2019.
  ZHOU Pengju. Study on friction torque characteristics of YRT turntable bearings[D]. Henan: Henan University of Science and Technology, 2019.
[20] 肖文, 王忠强, 裴世源, 等. 大兆瓦风电主轴双列圆锥滚子轴承的承载接触机理[J]. 机械设计与制造, 2021(6): 90-94.
  XIAO Wen, WANG Zhongqiang, PEI Shiyuan, et al. Load bearing contact mechanism of dual row tapered roller bearings for large megawatt wind turbine spindles[J]. Machinery Design & Manufacture, 2021(6): 90-94.
[21] SCHIJVE J. Fatigue of structures and materials[M]. Germany: Springer Netherlands, 2009.
[22] RAJE N, SADEGHI F, RATEICK R G. A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J]. Journal of Tribology, 2008, 130(4): 786-791.
[23] SLACK T, SADEGHI F. Explicit finite element modeling of subsurface initiated spalling in rolling contacts[J]. Tribology International, 2010, 43(9): 1693-1702.
[24] 鄢闯. 四列圆柱滚子轴承故障状态下动力学分析[D]. 太原: 太原科技大学, 2016.
  YAN Chuang. Dynamic analysis of four row cylindrical roller bearings under fault conditions[D]. Taiyuan: Taiyuan University of Science and Technology, 2016.
[25] 张金辉, 袁久明, 刘登. 考虑滚子轮廓的三排滚子轴承载荷分布及寿命计算[J]. 工程机械, 2023, 54(3): 76-81.
  ZHANG Jinhui, YUAN Jiuming, LIU Deng. Load distribution and life calculation of three row roller bearings considering roller profile[J]. Construction Machinery and Equipment, 2023, 54(3): 76-81.
Outlines

/