New Type Power System and the Integrated Energy

A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market

  • Yi CHEN ,
  • Han WANG ,
  • Xiaoyuan XU ,
  • Youlin HU ,
  • Zheng YAN ,
  • Dan ZENG ,
  • Kai FENG
Expand
  • 1. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Power Dispatching and Control Center, State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China
    3. China Electric Power Research Institute (Nanjing Branch), Nanjing 210003, China

Received date: 2022-04-24

  Revised date: 2022-05-25

  Accepted date: 2022-08-05

  Online published: 2023-09-27

Abstract

To promote the optimal allocation of resources across the country, China is actively developing inter-provincial electricity transactions, and will gradually form an inter-provincial and intra-provincial electricity market operation mode. In this context, a two-stage day-ahead, and intraday economic dispatch framework considering inter-provincial and intra-provincial bi-level market coordinated operation is proposed. In the day-ahead dispatch stage, an inter-provincial and intra-provincial bi-level economic dispatch model is constructed. In the intraday dispatch stage, an economic dispatch model considering the forecast error of source-load is constructed. To further deal with the influence of the uncertainty of source-load forecast on economic dispatch, a two-stage day-ahead and intraday distributionally robust economic dispatch model and its solution method are proposed, realizing the economic dispatch under random scene ambiguity set. Finally, a multi-sending ends and multi-receiving ends interconnected test system is constructed using IEEE 39-bus and 118-bus systems. The effectiveness of the proposed model and method is verified by simulation.

Cite this article

Yi CHEN , Han WANG , Xiaoyuan XU , Youlin HU , Zheng YAN , Dan ZENG , Kai FENG . A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market[J]. Journal of Shanghai Jiaotong University, 2023 , 57(9) : 1114 -1125 . DOI: 10.16183/j.cnki.jsjtu.2022.121

References

[1] ZHANG Y, ZHANG J Y, YANG Z F, et al. Analysis of the distribution and evolution of energy supply and demand centers of gravity in China[J]. Energy Policy, 2012, 49: 695-706.
[2] YI B W, XU J H, FAN Y. Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model[J]. Applied Energy, 2016, 184: 641-658.
[3] 国家能源局. 清洁低碳, 能源结构这样转型[EB/OL]. (2021-04-09)[2022-04-15]. http://www.nea.gov.cn/2021-04/09/c_139869431.htm.
[3] National Energy Administration. Clean and low-carbon, energy structure transformation[EB/OL]. (2021-04-09)[2022-04-15]. http://www.nea.gov.cn/2021-04/09/c_139869431.htm.
[4] 郭立邦, 丁一, 包铭磊, 等. 两级电力市场环境下计及风险的省间交易商最优购电模型[J]. 电网技术, 2019, 43(8): 2726-2734.
[4] GUO Libang, DING Yi, BAO Minglei, et al. An optimal power purchase model of inter-provincial traders in two-level electricity market considering risk management[J]. Power System Technology, 2019, 43(8): 2726-2734.
[5] 许丹, 梁访, 黄国栋, 等. 考虑多级调度的跨省区大电网安全约束经济调度模型[J]. 电力系统自动化, 2019, 43(22): 94-100.
[5] XU Dan, LIANG Fang, HUANG Guodong, et al. Security constrained economic dispatch model of inter-provincial power grid considering multi-level dispatch[J]. Automation of Electric Power Systems, 2019, 43(22): 94-100.
[6] 李国庆, 李欣彤, 边竞, 等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报, 2021, 41(14): 4763-4776.
[6] LI Guoqing, LI Xintong, BIAN Jing, et al. Two level scheduling strategy for inter-provincial DC power grid considering the uncertainty of PV-load prediction[J]. Proceeding of the CSEE, 2021, 41(14): 4763-4776.
[7] 徐帆, 丁恰, 韩红卫, 等. 促进跨区新能源消纳的直流联络线功率优化模型及分析[J]. 电力系统自动化, 2017, 41(18): 152-159.
[7] XU Fan, DING Qia, HAN Hongwei, et al. Power optimization model and analysis of HVDC tie-line for promoting integration of inter-regional renewable energy accommodation[J]. Automation of Electric Power Systems, 2017, 41(18): 152-159.
[8] 李骥, 张慧媛, 程杰慧, 等. 基于源荷状态的跨区互联系统协调优化调度[J]. 电力系统自动化, 2020, 44(17): 26-33.
[8] LI Ji, ZHANG Huiyuan, CHENG Jiehui, et al. Coordinated and optimal scheduling of inter-regional interconnection system based on source and load status[J]. Automation of Electric Power Systems, 2020, 44(17): 26-33.
[9] 陈磊, 姜飞, 叶泽, 等. 考虑电网运行风险的省间转供电力交易补偿模型[J]. 电网技术, 2020, 44 (12): 4583-4592.
[9] CHEN Lei, JIANG Fei, YE Ze, et al. Compensation model of inter-provincial transfer electricity transaction considering grid operation risk[J]. Power System Technology, 2020, 44(12): 4583-4592.
[10] ZHENG Q P, WANG J H, PARDALOS P M, et al. A decomposition approach to the two-stage stochastic unit commitment problem[J]. Annals of Operations Research, 2013, 210(1): 387-410.
[11] LI T, SHAHIDEHPOUR M, LI Z Y, et al. Risk-constrained bidding strategy with stochastic unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(1): 449-458.
[12] 徐秋实, 邓长虹, 赵维兴, 等. 含风电电力系统的多场景鲁棒调度方法[J]. 电网技术, 2014, 38(3): 653-661.
[12] XU Qiushi, DENG Changhong, ZHAO Weixing, et al. A multi-scenario robust dispatch method for power grid integrated with wind farms[J]. Power System Technology, 2014, 38 (3): 653-661.
[13] LUBIN M, DVORKIN Y, BACKHAUS S. A robust approach to chance constrained optimal power flow with renewable generation[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3840-3849.
[14] STREET A, OLIVEIRA F, ARROYO J M. Contingency-constrained unit commitment with n-K security criterion: A robust optimization approach[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1581-1590.
[15] SHANG C, YOU F Q. Distributionally robust optimization for planning and scheduling under uncertainty[J]. Computers & Chemical Engineering, 2018, 110(2): 53-68.
[16] ZHAO C Y, GUAN Y P. Data-driven stochastic unit commitment for integrating wind generation[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2587-2596.
[17] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247.
[17] SHUI Yue, LIU Junyong, GAO Hongjun, et al. A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 7235-7247.
[18] 曾丹, 谢开, 庞博, 等. 中国特色、全国统一的电力市场关键问题研究(3): 省间省内电力市场协调运行的交易出清模型[J]. 电网技术, 2020, 44(8): 2809-2819.
[18] ZENG Dan, XIE Kai, PANG Bo, et al. Key issues of national unified electricity market with Chinese characteristics (3): Transaction clearing models and algorithms adapting to the coordinated operation of provincial electricity markets[J]. Power System Technology, 2020, 44(8): 2809-2819.
[19] 陈之栩. 节点边际电价与阻塞管理算法的研究[D]. 北京: 华北电力大学(北京), 2007.
[19] CHEN Zhixu. Study on locational marginal prices and congestion management algorithm[D]. Beijing: North China Electric Power University, 2007.
[20] TALBI E G. Metaheuristics for bi-level optimization[M]. Berlin: Springer, 2013.
[21] WANG X F, LI F X, ZHANG Q W, et al. Profit-oriented BESS siting and sizing in deregulated distribution systems[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 1528-1540.
[22] 吴杰, 丁明, 张晶晶. 基于云模型和k-means聚类的风电场储能容量优化配置方法[J]. 电力系统自动化, 2018, 42(24): 67-73.
[22] WU Jie, DING Ming, ZHANG Jingjing. Capacity configuration method of energy storage system for wind farm based on cloud model and k-means clustering[J]. Automation of Electric Power Systems, 2018, 42(24): 67-73.
[23] ZENG B, ZHAO L. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters, 2013, 41(5): 457-461.
[24] ZIMMERMAN R D, MURILLO-SáNCHEZ C E, THOMAS R J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26(1): 12-19.
Outlines

/