Naval Architecture, Ocean and Civil Engineering

Assessment Method for Early Fatigue Failure of Crankshaft Based on Dispersion of Impact Energy

  • LI Xiangzhe ,
  • LIANG Gang ,
  • ZHENG Xiaomei ,
  • XU Congcong ,
  • XU Jinquan
Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Marine Diesel Engine Research Institute, CSSC, Shanghai 201108, China
    3. Beijing Aeronautical Engineering Technical Research Center, Beijing 100076,China

Received date: 2023-05-22

  Revised date: 2023-07-18

  Accepted date: 2023-08-09

  Online published: 2023-08-15

Abstract

Considering scattering behaviors of strength and fatigue life characteristics of actual materials, a method for evaluating the early fatigue failure of crankshafts has been proposed. The micro-mechanism of the scatter of strength and life characteristics is the nonuniform distribution of microstructures (including micro-defects) inside the material, which can be uniformly characterized by the probability distribution of initial damage. For the same grade of alloy, the median values of strength and fatigue life can be basically the same, but the dispersion can be significantly different, which must be determined by sufficient sampling tests. For a diesel engine crankshaft forging made of the 34CrNi3MoA alloy, the dispersion of fatigue limit was estimated based on the scatter of impact sampling test data, while the mean value of probability distribution of fatigue limit was determined by structural fatigue tests. The safety factor recommended in the conventional design manual only implicitly assumes material dispersion. Considering the actual dispersion of the tested material, the quantitative relationship between safety factor and reliability has been established. Early fatigue failure of the crankshaft can easily occur when the actual dispersion of material fails to meet the specified reliability requirement.

Cite this article

LI Xiangzhe , LIANG Gang , ZHENG Xiaomei , XU Congcong , XU Jinquan . Assessment Method for Early Fatigue Failure of Crankshaft Based on Dispersion of Impact Energy[J]. Journal of Shanghai Jiaotong University, 2025 , 59(1) : 111 -120 . DOI: 10.16183/j.cnki.jsjtu.2023.203

References

[1] VIZENTIN G, VUKELIC G, MURAWSKI L, et al. Marine propulsion system failures—A review[J]. Journal of Marine Science and Engineering, 2020, 8: 662.
[2] ZHOU H, WEI P, LIU H, et al. Roles of microstructure, inclusion, and surface roughness on rolling contact fatigue of a wind turbine gear[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7): 1368-1383.
[3] ALIAKBARI K, NEJAD R M, TOROQ S K P, et al. Assessment of unusual failure in crankshaft of heavy-duty truck engine[J]. Engineering Failure Analysis, 2022, 134: 106085.
[4] ZERBST U, KLINGER C. Material defects as cause for the fatigue failure of metallic components[J]. International Journal of Fatigue, 2019, 127: 312-323.
[5] 张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535.
  ZHANG Songlin, MA Dongliang, WANG Deyu. Method for plate crack damage detection based on long short-term memory neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 527-535.
[6] 王佳良, 魏大盛, 王延荣, 等. 含缺陷轮盘失效概率分析流程与数值模拟[J]. 推进技术, 2019, 40(11): 2562-2570.
  WANG Jialiang, WEI Dasheng, WANG Yanrong, et al. Analysis procedure and numerical simulation of failure probability of turbine disk caused by defects[J]. Journal of Propulsion Technology, 2019, 40(11): 2562-2570.
[7] 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51.
  XUAN Fuzhen, ZHU Mingliang, WANG Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51.
[8] 许金泉. 材料强度学[M]. 上海: 上海交通大学出版社, 2009.
  XU Jinquan. Theory on the strength of materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2009.
[9] CUI X, ZHANG S, WANG Z Y, et al. Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting[J]. Materials Science & Engineering: A, 2022, 845: 143215.
[10] 赵少汴. 抗疲劳设计手册[M]. 北京: 机械工业出版社, 2015.
  ZHAO Shaobian. Anti-fatigue design manual[M]. Beijing: China Machine Press, 2015.
[11] GROTE K H, ANTONSSON E K. Handbook of mechanical engineering[M]. Berlin, Germany: Springer, 2009.
[12] 黄朝晖, 袁奇, 张弘斌, 等. 某型火箭发动机涡轮转子流热固耦合强度及疲劳寿命分析[J]. 西安交通大学学报, 2022, 56(8): 73-84.
  HUANG Chaohui, YUAN Qi, ZHANG Hongbin, et al. Analysis of fluid-thermal-solid coupling strength and fatigue life of a certain rocket engine turbine rotor[J]. Journal of Xi’an Jiaotong University, 2022, 56(8): 73-84.
[13] VAARA J, KUNNARI A, FRONDELIUS T. Literature review of fatigue assessment methods in residual stressed state[J]. Engineering Failure Analysis, 2020, 110: 104379.
[14] SOLA J F, ALINEJAD F, RAHIMIDEHGOLAN F, et al. Fatigue life assessment of crankshaft with increased horsepower[J]. International Journal of Structural Integrity, 2019, 10: 13-24.
[15] 丁然, 李强. 基于损伤累积模型的可靠度保守估计方法[J]. 上海交通大学学报, 2019, 53(10): 1225-1229.
  DING Ran, LI Qiang. Method in conservative estimation of reliability based on damage accumulation model[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1225-1229.
[16] 韦益夫, KAWAMURA Y, 王德禹. 改进移动最小二乘法及其在结构可靠性分析中的应用[J]. 上海交通大学学报, 2018, 52(4): 455-460.
  WEI Yifu, KAWAMURA Y, WANG Deyu. An improved moving least square method and application in structural reliability analysis[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 455-460.
[17] LUO C, KESHTEGAR B, ZHU S P, et al. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114218.
[18] 段红燕, 唐国鑫, 盛捷, 等. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808.
  DUAN Hongyan, TANG Guoxin, SHENG Jie, et al. A novel prediction model for fatigue strength[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 801-808.
[19] 苏霞. ADB610钢力学性能的可靠性研究[D]. 昆明: 昆明理工大学, 2009.
  SU Xia. Reliability study on mechanical property of ADB610 steel[D]. Kunming: Kunming University of Science and Technology, 2009.
[20] LI W, YU Y, LI X, et al. Quantitative characterization of material uniformity and fatigue life reliability based on the initial damage discreteness[J]. International Journal of Fatigue, 2023, 167: 107382.
[21] LARSEN R J, MARX M L. An introduction to mathematical statistics[M]. Hoboken, NJ, USA: Prentice Hall, 2005.
[22] 中华人民共和国国家发展和改革委员会. 大型合金结构钢锻件技术条件:JB/T 6396—2006[S]. 北京: 机械工业出版社, 2006.
  National Development and Reform Commission of the People’s Republic of China. Specification for the heavy alloy structural steel forgings: JB/T 6396—2006[S]. Beijing: China Machine Press, 2006.
[23] 中华人民共和国工业和信息化部. 中速柴油机整体曲轴钢锻件技术条件: CB/T 4313—2013[S]. 北京: 中国船舶工业综合技术经济研究院, 2014.
  Ministry of Industry and Information Technology of the People’s Republic of China. Specification of solid crankshaft forgings for median speed diesel engine: CB/T 4313—2013[S]. Beijing: China Institute of Marine Technology and Economy, 2014.
[24] LI H F, DUAN Q Q, ZHANG P, et al. The quantitative relationship between fracture toughness and impact toughness in high-strength steels[J]. Engineering Fracture Mechanics, 2019, 211: 362-370.
[25] CHAOUADI R, GERARD R. Development of a method for extracting fracture toughness from instrumented Charpy impact tests in the ductile and transition regimes[J]. Theoretical and Applied Fracture Mechanics, 2021, 115: 103080.
[26] WALLIN K. Critical assessment of the Rolfe-Novak CVN-KIC upper shelf correlation[J]. Engineering Fracture Mechanics, 2021, 258: 108117.
[27] 王自强, 陈少华. 高等断裂力学[M]. 北京: 科学出版社, 2009.
  WANG Ziqiang, CHEN Shaohua. Advanced fracture mechanics[M]. Beijing: Science Press, 2009.
[28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料夏比摆锤冲击试验方法: GB/T 229—2020[S]. 北京: 中国标准出版社, 2020.
  General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials-Charpy pendulum impact test method: GB/T 229—2020[S]. Beijing: Standards Press of China, 2020.
[29] 中国船级社. 钢质海船入级规范[S]. 北京: 人民交通出版社, 2018.
  China Classification Society. Rules for classification of sea-going steel ships[S]. Beijing: China Communications Press, 2018.
Outlines

/