New Type Power System and the Integrated Energy

State of Charge Estimation of Lithium-Ion Battery Considering Operating Conditions and Aging Degree

  • WU Jiang ,
  • ZHANG Yan ,
  • LIU Zelong ,
  • CHENG Gang ,
  • LEI Dong ,
  • JIAO Chaoyong
Expand
  • 1. School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
    2. Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an 710048, China
    3. NARI Technology Co., Ltd., Nanjing 211106, China

Received date: 2023-05-04

  Revised date: 2023-06-13

  Accepted date: 2023-06-16

  Online published: 2023-07-20

Abstract

When using the extended Kalman filter (EKF) to estimate the state of charge (SOC) of an electric vehicle power battery, the change of system noise and model parameters may lead to a reduction in estimation accuracy, due to variable operating conditions, battery aging, and other factors. The NCR18650B ternary lithium-ion battery is selected, and the second-order RC model is established with identified parameters. Then, by using EKF as the main body with a fixed measurement noise covariance and adaptively adjusting process noise covariance based on the maximum likelihood estimation criterion, an adaptive extended Kalman filter is built to estimate the SOC of the battery. Simultaneously, a Kalman filter is used to estimate the ohmic resistance in real time. Thus, an adaptive dual extended Kalman filter (ADEKF) algorithm is formed. Finally, algorithm verifications are performed with testing data and public datasets. The ADEKF proposed is used to estimate the SOC of five groups of aged lithium batteries under three operating conditions, which are constant current, dynamic stress test, and Beijing dynamic stress test, and compared with that of EKF and other algorithms. The results show that compared with EKF, the average absolute error of the estimation results of ADEKF for different aged batteries under three operating conditions decreases by 1.868 percentage points, 2.296 percentage points, and 2.534 percentage points, respectively, which proves that ADEKF algorithm can effectively improve the SOC estimation accuracy under multiple operating conditions, battery aging and the combination of the two factors.

Cite this article

WU Jiang , ZHANG Yan , LIU Zelong , CHENG Gang , LEI Dong , JIAO Chaoyong . State of Charge Estimation of Lithium-Ion Battery Considering Operating Conditions and Aging Degree[J]. Journal of Shanghai Jiaotong University, 2024 , 58(12) : 1935 -1945 . DOI: 10.16183/j.cnki.jsjtu.2023.168

References

[1] 李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266.
  LI Jiaqi, XU Xiaoyuan, YAN Zheng. A review of coupled electricity and hydrogen energy system with transportation system under the background of large-scale new energy vehicles access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266.
[2] DU C Q, SHAO J B, WU D M, et al. Research on co-estimation algorithm of SOC and SOH for lithium-ion batteries in electric vehicles[J]. Electronics, 2022, 11(2): 181.
[3] SUN Q, ZHANG H, ZHANG J R, et al. Adaptive unscented Kalman filter with correntropy loss for robust state of charge estimation of lithium-ion battery[J]. Energies, 2018, 11(11): 3123.
[4] 鲁伟, 续丹, 杨晴霞, 等. 锂电池分数阶建模与荷电状态研究[J]. 西安交通大学学报, 2017, 51(7): 124-129.
  LU Wei, XU Dan, YANG Qingxia, et al. Fractional model and state-of-charge of lithium battery[J]. Journal of Xi’an Jiaotong University, 2017, 51(7): 124-129.
[5] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118.
  LIU Yi, TAN Guojun, HE Xiaoqun. Optimized battery model based adaptive sigma Kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118.
[6] HUANG Z J, FANG Y S, XU J J. SOC estimation of Li-ION battery based on improved EKF algorithm[J]. International Journal of Automotive Technology, 2021, 22(2): 335-340.
[7] JIANG C, WANG S L, WU B, et al. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter[J]. Energy, 2021, 219: 119603.
[8] LIM K, BASTAWROUS H A, DUONG V H, et al. Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles[J]. Applied Energy, 2016, 169: 40-48.
[9] 杨帆, 和嘉睿, 陆鸣, 等. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559.
  YANG Fan, HE Jiarui, LU Ming, et al. SOC estimation of lithium-ion batteries based on BP-UKF algorithm[J]. Energy Storage Science & Technology, 2023, 12(2): 552-559.
[10] HE H W, XIONG R, ZHANG X W, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1461-1469.
[11] 陈玉珊, 秦琳琳, 吴刚, 等. 基于渐消记忆递推最小二乘法的电动汽车电池荷电状态在线估计[J]. 上海交通大学学报, 2020, 54(12): 1340-1346.
  CHEN Yushan, QIN Linlin, WU Gang, et al. Online state of charge estimation for battery in electric vehicles based on forgetting factor recursive least squares[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1340-1346.
[12] 杜帮华, 张宇, 吴铁洲, 等. 梯次利用锂离子电池等效模型参数在线辨识方法[J]. 储能科学与技术, 2021, 10(1): 342-348.
  DU Banghua, ZHANG Yu, WU Tiezhou, et al. An online identification method for equivalent model parameters of aging lithium-ion batteries[J]. Energy Storage Science & Technology, 2021, 10(1): 342-348.
[13] XIONG R, SUN F C, CHEN Z, et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles[J]. Applied Energy, 2014, 113: 463-476.
[14] SEAMAN A, DAO T S, MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation[J]. Journal of Power Sources, 2014, 256: 410-423.
[15] LI Y, YANG J, LIU W L, et al. Multi-level model reduction and data-driven identification of the lithium-ion battery[J]. Energies, 2020, 13(15): 3791.
[16] LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577.
[17] XIONG R, SUN F C, HE H W. Data-driven state-of-charge estimator for electric vehicles battery using robust extended Kalman filter[J]. International Journal of Automotive Technology, 2014, 15(1): 89-96.
[18] 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
  LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352.
[19] 裴磊. 基于平衡电压的电动汽车锂离子电池状态估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  PEI Lei. State estimation based on equilibrium voltages for lithium-ion batteries in electric vehicles[D]. Harbin:Harbin Institute of Technology, 2016.
[20] 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
  FU Shiyi, LYU Taolin, MIN Fanqi, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science & Technology, 2021, 10(3): 1127-1136.
[21] 宫明辉, 李凌峰, 乌江, 等. 变论域双模糊控制器在锂电池均衡策略仿真中的应用[J]. 西安交通大学学报, 2020, 54(11): 158-165.
  GONG Minghui, LI Lingfeng, WU Jiang, et al. Application of variable universe double fuzzy controller in simulation of lithium battery equilibrium strategy[J]. Journal of Xi’an Jiaotong University, 2020, 54(11): 158-165.
[22] 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018, 38(8): 2384-2393.
  CHENG Ze, YANG Lei, SUN Xingmian. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393.
[23] GUO Y F, ZHAO Z S, HUANG L M. SoC estimation of lithium battery based on AEKF algorithm[J]. Energy Procedia, 2017, 105: 4146-4152.
[24] 赵云飞, 徐俊, 王霄, 等. 双自适应衰减卡尔曼滤波锂电池荷电状态估计[J]. 西安交通大学学报, 2018, 52(12): 99-105.
  ZHAO Yunfei, XU Jun, WANG Xiao, et al. An estimation method for state of charge of lithium-ion batteries using dual adaptive fading extended Kalman filter[J]. Journal of Xi’an Jiaotong University, 2018, 52(12): 99-105.
[25] 岳晓奎, 袁建平. 一种基于极大似然准则的自适应卡尔曼滤波算法[J]. 西北工业大学学报, 2005, 23(4): 469-474.
  YUE Xiaokui, YUAN Jianping. An adaptive Kalman filtering algorithm based on maximum-likelihood criterion[J]. Journal of Northwestern Polytechnical University, 2005, 23(4): 469-474.
[26] 王义军, 左雪. 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46(14): 193-207.
  WANG Yijun, ZUO Xue. Review on estimation methods for state of charge of lithium-ion battery and their application scenarios[J]. Automation of Electric Power Systems, 2022, 46(14): 193-207.
[27] 魏学哲, 徐玮, 沈丹. 锂离子电池内阻辨识及其在寿命估计中的应用[J]. 电源技术, 2009, 33(3): 217-220.
  WEI Xuezhe, XU Wei, SHEN Dan. Internal resistance identification of Li-ion battery and its application in battery life estimation[J]. Chinese Journal of Power Sources, 2009, 33(3): 217-220.
[28] 王笑天, 杨志家, 王英男, 等. 双卡尔曼滤波算法在锂电池SOC估算中的应用[J]. 仪器仪表学报, 2013, 34(8): 1732-1738.
  WANG Xiaotian, YANG Zhijia, WANG Yingnan, et al. Application of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1732-1738.
[29] ZHENG F D, XING Y J, JIANG J C, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183: 513-525.
[30] 刘峰, 陈海忠. 基于CEEMDAN和ISOA-ELM的锂电池荷电状态预测[J]. 储能科学与技术, 2023, 12(4): 1244-1256.
  LIU Feng, CHEN Haizhong. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM[J]. Energy Storage Science & Technology, 2023, 12(4): 1244-1256.
[31] 白俊琦, 贤燕华. 基于BP-多时间尺度UKF优化算法的SOC估计[J/OL]. 电源学报. https://kns.cnki.net/kcms/detail//12.1420.tm.20221201.1510.002.html.
  BAI Junqi, XIAN Yanhua. State of charge estimation based on BP-UKF optimization algorithm[J/OL]. Journal of Power Supply. https://kns.cnki.net/kcms/detail//12.1420.tm.20221201.1510.002.html.
[32] 李宁, 何复兴, 马文涛, 等. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536.
  LI Ning, HE Fuxing, MA Wentao, et al. State-of-charge estimation of lithium-ion battery based on gated recurrent unit using empirical mode decomposition[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536.
Outlines

/