Journal of Shanghai Jiaotong University >
Operation Optimization for Integrated System of Wind-PV-Thermal-Storage with CC-P2G
Received date: 2022-07-13
Revised date: 2022-07-15
Accepted date: 2022-07-22
Online published: 2023-03-24
The carbon capture (CC) and power to gas (P2G) devices can utilize the abundant new energy of the system to capture the carbon emissions generated by thermal power combustion and generate usable gas, forming a carbon resource recycling chain. In order to reduce the carbon emission of the power system, promote new energy absorption, and improve the operation flexibility of the power system, an integrated system architecture including CC and P2G is proposed and its optimization operation model is designed. The operational characteristics of power flow and carbon flow in this architecture are mainly discussed. Considering the benefits of carbon emission trading under the quota system, an optimized operation model for the integrated system of wind-PV-thermal-storage with CC-P2G is proposed, aimed at maximizing the comprehensive benefits of the integrated system and taking the operation characteristics of various equipment as constraint conditions. Furthermore, the effectiveness of the CC-P2G system in improving new energy consumption capacity and system operation efficiency is verified. The results show that the participation of the CC-P2G system needs to be effectively coordinated with market mechanisms such as carbon emissions quota trading, which can reduce the overall carbon emissions of the system and improve its operation efficiency.
CHENG Renli, LI Jiangnan, ZHOU Baorong, ZHAO Wenmeng, LIU Ya . Operation Optimization for Integrated System of Wind-PV-Thermal-Storage with CC-P2G[J]. Journal of Shanghai Jiaotong University, 2024 , 58(5) : 709 -718 . DOI: 10.16183/j.cnki.jsjtu.2022.270
[1] | 中华人民共和国国家发展和改革委员会,国家能源局. 关于开展“风光水火储一体化”“源网荷储一体化”的指导意见(征求意见稿)[R]. 北京: 国家发展改革委, 2020. |
National Development and Reform Commission, National Energy Administration. Guiding opinions on “Integration of landscape, water, fire, and storage” and “Integration of source, net, charge, and storage” (Draft for comments)[R]. Beijing: National Development and Reform Commission, 2020. | |
[2] | 李建林, 崔宜琳, 熊俊杰, 等. “两个一体化” 战略下储能应用前景分析[J]. 热力发电, 2021, 50(8): 1-8. |
LI Jianlin, CUI Yilin, XIONG Junjie, et al. Analysis on application prospect of energy storage under the strategy of “two integrations”[J]. Thermal Power Generation, 2021, 50(8): 1-8. | |
[3] | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6): 2256-2269. |
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2269. | |
[4] | 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41(12): 4001-4020. |
LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41(12): 4001-4020. | |
[5] | 万玉良, 刘鑫, 吴晓丹, 等. 风电与多能源储能联合调峰多场景动态鲁棒优化模型[J]. 可再生能源, 2020, 38(5): 690-695. |
WAN Yuliang, LIU Xin, WU Xiaodan, et al. Dynamic robust optimization model of wind power and multi energy storage combined for power grid peak regulation[J]. Renewable Energy Resources, 2020, 38(5): 690-695. | |
[6] | MOUSAVI M, RAYATI M, RANJBAR A M. Optimal operation of a virtual power plant in frequency constrained electricity market[J]. IET Generation, Transmission & Distribution, 2019, 13(11): 2123-2133. |
[7] | 项颂, 陈璐, 苏鹏, 等. 考虑风储多维运行边界的调峰资源优化配置模型[J]. 可再生能源, 2020, 38(7): 980-985. |
XIANG Song, CHEN Lu, SU Peng, et al. An optimization model of hybrid Wind-ES power system configuration base on multidimen-sional operation boundary[J]. Renewable Energy Resources, 2020, 38(7): 980-985. | |
[8] | 赵会茹, 陆昊, 李子衿, 等. 考虑风光不确定性的含储能CCHP微网市场环境下两阶段鲁棒优化运行策略[J]. 电力建设, 2020, 41(11): 116-125. |
ZHAO Huiru, LU Hao, LI Zijin, et al. Two-stage robust optimization of CCHP microgrid with consideration of wind power and PV uncertainty and storage system[J]. Electric Power Construction, 2020, 41(11): 116-125. | |
[9] | 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. |
CHEN Pohan, FENG Wei, SUN Kai, et al. Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. | |
[10] | 白中华, 李强, 陈晶, 等. 储能电站在多站融合场景下的运行策略优化[J]. 中国电力, 2021, 54(6): 136-144. |
BAI Zhonghua, LI Qiang, CHEN Jing, et al. Operation strategy optimization of energy storage power station in multi-station integration scenario[J]. Electric Power, 2021, 54(6): 136-144. | |
[11] | 武昭原, 周明, 王剑晓, 等. 激励火电提供灵活性的容量补偿机制设计[J]. 电力系统自动化, 2021, 45(6): 43-51. |
WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al. Mechanism design of capacity payment for incentivizing flexibility of thermal power[J]. Automation of Electric Power Systems, 2021, 45(6): 43-51. | |
[12] | 徐姗姗, 郭通, 王月, 等. 大规模火电灵活性改造背景下电-热能源集成系统优化调度[J]. 电力建设, 2021, 42(5): 27-37. |
XU Shanshan, GUO Tong, WANG Yue, et al. Optimal scheduling of electro-thermal energy integrated system under the background of flexibility retrofit of thermal power unit[J]. Electric Power Construction, 2021, 42(5): 27-37. | |
[13] | 徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 4626-4635. |
XU Hao, LI Huaqiang. Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power System Technology, 2020, 44(12): 4626-4635. | |
[14] | 李昭昱, 艾芊, 张宇帆, 等. 数据驱动技术在虚拟电厂中的应用综述[J]. 电网技术, 2020, 44(7): 2411-2419. |
LI Zhaoyu, AI Qian, ZHANG Yufan, et al. Application of data-driven technology in virtual power plant[J]. Power System Technology, 2020, 44(7): 2411-2419. | |
[15] | 谈金晶, 李扬. 多能源协同的交易模式研究综述[J]. 中国电机工程学报, 2019, 39(22): 6483-6496. |
TAN Jinjing, LI Yang. Review on transaction mode in multi-energy collaborative market[J]. Proceedings of the CSEE, 2019, 39(22): 6483-6496. | |
[16] | 周任军, 肖钧文, 唐夏菲, 等. 电转气消纳新能源与碳捕集电厂碳利用的协调优化[J]. 电力自动化设备, 2018, 38(7): 61-67. |
ZHOU Renjun, XIAO Junwen, TANG Xiafei, et al. Coordinated optimization of carbon utilization between power-to-gas renewable energy accommodation and carbon capture power plant[J]. Electric Power Automation Equipment, 2018, 38(7): 61-67. | |
[17] | 凌梓, 杨秀, 李莉华, 等. 含电转气多能系统的协调控制与优化调度[J]. 太阳能学报, 2020, 41(12): 9-17. |
LING Zi, YANG Xiu, LI Lihua, et al. Coordinated control and optimal scheduling of multi energy systems with power-to-gas devices[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 9-17. | |
[18] | 马亦耕, 张峰, 丁磊. 弃风参与电网调频的电转气-储气-燃气轮机容量优化配置[J]. 电力系统自动化, 2020, 44(7): 79-86. |
MA Yigeng, ZHANG Feng, DING Lei. Optimal capacity configuration of power-to-gas, gas tank and natural gas generation unit with participation of curtailed wind power in frequency regulation of power grid[J]. Automation of Electric Power Systems, 2020, 44(7): 79-86. | |
[19] | 降国俊, 崔双喜, 樊小朝, 等. 考虑电转氢气过程及综合需求响应的电-氢-气综合能源系统协调优化运行[J]. 可再生能源, 2021, 39(1): 88-94. |
JIANG Guojun, CUI Shuangxi, FAN Xiaochao, et al. Electric-hydrogen-gas integrated energy system considering E2H conversion process and comprehensive demand response coordination and optimization of operation[J]. Renewable Energy Resources, 2021, 39(1): 88-94. | |
[20] | 冯奕, 应展烽, 颜建虎. 考虑碳排放成本的多能互补微能源网储能装置优化运行[J]. 电力系统保护与控制, 2021, 49(8): 92-99. |
FENG Yi, YING Zhanfeng, YAN Jianhu. Optimized operation of energy storage in a multi-energy complementary micro-energy network considering carbon emission cost[J]. Power System Protection and Control, 2021, 49(8): 92-99. | |
[21] | 何良年. 二氧化碳化学: 碳捕集、活化与资源化[J]. 科学通报, 2021, 66(7): 713-715. |
HE Liangnian. Carbon dioxide chemistry: Carbon capture, activation and utilization[J]. Chinese Science Bulletin, 2021, 66(7): 713-715. | |
[22] | 韩义, 周琳绯, 王研凯, 等. 新型MEA法用于燃煤电厂调峰的系统构建及性能研究[J]. 中国电机工程学报, 2021, 41(11): 3722-3729. |
HAN Yi, ZHOU Linfei, WANG YanKai, et al. Concept design and performance investigation on coal-fired power plant using a novel MEA-based process for peak shaving[J]. Proceedings of the CSEE, 2021, 41(11): 3722-3729. | |
[23] | 罗承先. 德国采用电转气技术实现低碳化[J]. 中外能源, 2017, 22(4): 20-26. |
LUO Chengxian. Application of power-to-gas technology for low carbonation[J]. Sino-Global Energy, 2017, 22(4): 20-26. |
/
〈 |
|
〉 |