New Type Power System and the Integrated Energy

Distributed Prescribed-Time Consensus Based Cooperative Control for DC Microgrids

Expand
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-03-05

  Revised date: 2022-05-09

  Accepted date: 2022-06-17

  Online published: 2023-03-21

Abstract

A microgrid control method based on prescribed time control is proposed to solve the cooperative control problem of distributed energy resources (DER) in DC microgrid. First, a current control method based on prescribed time control is proposed, which can allocate the power output of each DER proportionally within a pre-defined time. Meanwhile, the outlet voltage of each distributed power supply can be adjusted to be near the rated value and the observation value can be kept at the rated value. Then, the microgrid system is simulated through MATLAB/Simulink and the effectiveness of the proposed control strategy is verified in different working conditions. Afterward, the finite-time control strategy is established in the simulated system. A comparison of the conservative power quality of the system current with the estimated time of system convergence in the scheduled-time control strategy verifies the advantages of the proposed strategy.

Cite this article

ZHOU Ruchang, WANG Ziqiang, WANG Jie . Distributed Prescribed-Time Consensus Based Cooperative Control for DC Microgrids[J]. Journal of Shanghai Jiaotong University, 2023 , 57(7) : 824 -834 . DOI: 10.16183/j.cnki.jsjtu.2022.050

References

[1] 董旭柱, 华祝虎, 尚磊, 等. 新型配电系统形态特征与技术展望[J]. 高电压技术, 2021, 47(9): 3021-3035.
[1] DONG Xuzhu, HUA Zhuhu, SHANG Lei, et al. Morphological characteristics and technology prospect of new distribution system[J]. High Voltage Engineering, 2021, 47(9): 3021-3035.
[2] MATHEW P, MADICHETTY S, MISHRA S. A multilevel distributed hybrid control scheme for islanded dc microgrids[J]. IEEE Systems Journal, 2019, 13(4): 4200-4207.
[3] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1855.
[3] WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1855.
[4] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046.
[4] HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046.
[5] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59.
[5] XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak &carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59.
[6] 姜淞瀚, 彭克, 徐丙垠, 等. 直流配电系统示范工程现状与展望[J]. 电力自动化设备, 2021, 41(5): 219-231.
[6] JIANG Songhan, PENG Ke, XU Bingyin, et al. Current situation and prospect of demonstration projects of DC distribution system[J]. Electric Power Automation Equipment, 2021, 41(5): 219-231.
[7] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
[7] ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[8] 李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801.
[8] LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801.
[9] 杨丘帆, 黄煜彬, 石梦璇, 等. 基于一致性算法的直流微电网多组光储单元分布式控制方法[J]. 中国电机工程学报, 2020, 40(12): 3919-3927.
[9] YANG Qiufan, HUANG Yubin, SHI Mengxuan, et al. Consensus based distributed control for multiple pv-battery storage units in DC microgrid[J]. Proceedings of the CSEE, 2020, 40(12): 3919-3927.
[10] 李霞林, 郭力, 黄迪, 等. 直流配电网运行控制关键技术研究综述[J]. 高电压技术, 2019, 45(10): 3039-3049.
[10] LI Xialin, GUO Li, HUANG Di, et al. Research review on operation and control of DC distribution networks[J]. High Voltage Engineering, 2019, 45(10): 3039-3049.
[11] 顾伟, 楼冠男, 柳伟. 微电网分布式控制理论与方法[M]. 北京: 科学出版社, 2019.
[11] GU Wei, LOU Guannan, LIU Wei. Distributed control theory and method of microgrid[M]. Beijing: Science Press, 2019.
[12] 李一琳. 基于有限时间一致性的直流微电网分布式协调控制[D]. 广州: 华南理工大学. 2019.
[12] LI Yilin. Distributed coordinated control for DC microgrid based on finite-time consensus algorithm[D]. Guangzhou: South China University of Technology, 2019.
[13] CHEN G, GUO Z. Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2002-2014.
[14] 马宇辰. 直流微电网分布式单元协同控制与负荷分配研究[D]. 上海: 上海电力大学, 2021.
[14] MA Yuchen. Research on cooperative control and load distribution of distributed units on DC microgrids[D]. Shanghai: Shanghai University of Electric Power, 2021.
[15] WANG Z Q, WANG J, MA M L, et al. A distributed event-triggered fixed-time fault-tolerant secondary control framework of islanded AC microgrid against faults and communication constraints[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3817-3833.
[16] WANG Z Q, WANG J, MA M L, et al. Distributed event-triggered fixed-time fault-tolerant secondary control of islanded AC microgrid[J]. IEEE Transactions on Power Systems, 2022, 37(5): 4078-4093.
[17] NETO P J, BARROS T A, SILVEIRA P C, et al. Power management strategy based on virtual inertia for DC microgrids[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12472-124857.
[18] XU Y, SUN H, GU W, et al. Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 225-235.
[19] DEHKORDI N M, SADATI N, HAMZEH M. Distributed robust finite-time secondary voltage and frequency control of islanded microgrids[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3648-3659.
[20] WANG Y, SONG Y, HILL D J, et al. Prescribed-time consensus and containment control of networked multiagent systems[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1138-1147.
[21] SAHOO S, MISHRA S. A distributed finite-time secondary average voltage regulation and current sharing controller for DC microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 282-292.
[22] WANG P, HUANG R, ZAERY M, et al. A fully distributed fixed-time secondary controller for DC microgrids[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6586-6597.
[23] XU Y, SUN H. Distributed finite-time convergence control of an islanded low-voltage AC microgrid[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2339-2348.
[24] ZHAO D, ZHANG C, LI Y, et al, Distributed robust frequency restoration and active power sharing for autonomous microgrids with event-triggered strategy[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3819-3834.
[25] SARRAFAN N, ROSTAMI M A, ZAREI J, et al. Improved distributed prescribed finite-time secondary control of inverter-based microgrids: Design and real-time implementation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11135-11145.
[26] SONG Y, WANG Y, HOLLOWAY J, et al. Time-varying feedback for finite-time robust regulation of normal-form nonlinear systems[C]// 2016 IEEE 55th Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2016: 3837-3842.
[27] WU X, XU Y, WU X Y, et al. A two-layer distributed cooperative control method for islanded networked microgrid systems[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 942-957.
[28] WANG Y, SONG Y, HILL D J, et al. Prescribed finite time consensus of networked multi-agent systems[C]// 2017 IEEE 56th Annual Conference on Decision and Control. Melbourne, VIC, Australia: IEEE, 2017: 4088-4093.
[29] ZAERY M, WANG P, WANG W, et al. Distributed global economical load sharing for a cluster of DC microgrids[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3410-3420.
Outlines

/