Electronic Information and Electrical Engineering

Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array

Expand
  • 1. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433, China

Received date: 2022-07-25

  Revised date: 2022-09-25

  Accepted date: 2022-11-23

  Online published: 2023-03-10

Abstract

Optical detection of partial discharge (PD) is an important way to reflect the insulation status of equipment. C4F7N/CO2 gas mixture is one of the most potential substitutes for SF6 at present, but there is a lack of research on its optical PD characteristics and diagnostic methods. In this paper, a PD multispectral array detection platform that can collect 7 characteristic bands is constructed, and 4 kinds of PD defects are produced. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and feature stacking map under the conditions of 5 different ratios of C4F7N/CO2 gas mixture and pure SF6 gas are analyzed. Finally, a novel method of PD diagnosis based on multispectral features (MF) and k-nearest neighbors (KNN) is proposed. The experimental results show that the fault recognition accuracy in pure SF6 can reach 96.2%. The recognition rate of C4F7N/CO2 gas mixture is above 88%, and the highest accuracy rate is 91.1%. This method has a guiding significance for the PD diagnosis of environmentally friendly gas-insulated equipment, and provides a new route for traditional PD detection and diagnosis.

Cite this article

LI Ze, QIAN Yong, ZANG Yiming, ZHOU Xiaoli, SHENG Gehao, JIANG Xiuchen . Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array[J]. Journal of Shanghai Jiaotong University, 2023 , 57(9) : 1176 -1185 . DOI: 10.16183/j.cnki.jsjtu.2022.299

References

[1] 高克利, 颜湘莲, 王浩, 等. 环保型气体绝缘输电线路(GIL)技术发展[J]. 高电压技术, 2018, 44(10): 3105-3113.
[1] GAO Keli, YAN Xianglian, WANG Hao, et al. Progress in environment-friendly gas-insulated transmission line(GIL)[J]. High Voltage Engineering, 2018, 44(10): 3105-3113.
[2] 臧奕茗, 钱勇, 陈孝信, 等. 基于非下采样Contourlet变换的光电图像融合方法在GIL局放检测中的应用[J]. 高电压技术, 2021, 47(2): 519-528.
[2] ZANG Yiming, QIAN Yong, CHEN Xiaoxin, et al. Application of photoelectric image fusion method based on non-subsampled contourlet transform in GIL partial discharge detection[J]. High Voltage Engineering, 2021, 47(2): 519-528.
[3] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277.
[3] TANG Zhiguo, TANG Mingze, LI Jinzhong, et al. Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277.
[4] 缪金, 陈平, 顾寅, 等. 荧光光纤局部放电检测的优化匹配方法研究[J]. 电工电能新技术, 2021, 40(7): 62-69.
[4] MIAO Jin, CHEN Ping, GU Yin, et al. Influence factors and optimization of partial discharge detection based on plastic fluorescent bare fiber[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(7): 62-69.
[5] 李军浩, 韩旭涛, 刘泽辉, 等. 电气设备局部放电检测技术述评[J]. 高电压技术, 2015, 41(8): 2583-2601.
[5] LI Junhao, HAN Xutao, LIU Zehui, et al. Review on partial discharge measurement technology of electrical equipment[J]. High Voltage Engineering, 2015, 41(8): 2583-2601.
[6] 钱勇, 张悦, 刘伟, 等. T型GIS模型中局部放电光学信号传播特性仿真[J]. 高电压技术, 2019, 45(5): 1510-1517.
[6] QIAN Yong, ZHANG Yue, LIU Wei, et al. Simulation on the propagation of the optical signal of partial discharge in T-shaped GIS model[J]. High Voltage Engineering, 2019, 45(5): 1510-1517.
[7] ZANG Y M, QIAN Y, WANG H, et al. A novel optical localization method for partial discharge source using ANFIS virtual sensors and simulation fingerprint in GIL[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
[8] WENGER P, BELTLE M, TENBOHLEN S, et al. Combined characterization of free-moving particles in HVDC-GIS using UHF PD, high-speed imaging, and pulse-sequence analysis[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1540-1548.
[9] REN M, ZHOU J R, YANG S J, et al. Optical partial discharge diagnosis in SF6 gas-insulated system with SiPM-based sensor array[J]. IEEE Sensors Journal, 2018, 18(13): 5532-5540.
[10] 周文俊, 郑宇, 高克利, 等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术, 2018, 44(10): 3114-3124.
[10] ZHOU Wenjun, ZHENG Yu, GAO Keli, et al. Progress in researching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124.
[11] 颜湘莲, 郑宇, 黄河, 等. C4F7N/CO2混合气体对局部不均匀电场的敏感特性[J]. 电工技术学报, 2020, 35(1): 43-51.
[11] YAN Xianglian, ZHENG Yu, HUANG He, et al. Sensitivity of C4F7N/CO2 Gas Mixture to Partial Inhomogeneous Electric FieldFull text replacement[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 43-51.
[12] 张晓星, 张引, 傅明利, 等. 基于紫外光谱的C4F7N/CO2混合气体混合比检测[J]. 高电压技术, 2019, 45(4): 1034-1039.
[12] ZHANG Xiaoxing, ZHANG Yin, FU Mingli, et al. Mixing ratio detection for C4F7N/CO2 mixed gas based on ultraviolet spectroscopy[J]. High Voltage Engineering, 2019, 45(4): 1034-1039.
[13] 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845.
[13] ZHANG Xiaoxing, CHEN Qi, ZHANG Ji, et al. Power frequency breakdown characteristics of EnvironmentalFriendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845.
[14] ONO R, ODA T. Measurement of hydroxyl radicals in pulsed corona discharge[J]. Journal of Electrostatics, 2002, 55(3/4): 333-342.
[15] KIEFFEL Y. Characteristics of g3-an alternative to SF6[C]∥2016 IEEE International Conference on Dielectrics. Montpellier, France: IEEE, 2016: 880-884.
[16] LI Z, QIAN Y, WANG H, et al. A novel image-orientation feature extraction method for partial discharges[J]. IET Generation, Transmission & Distribution, 2022, 16(6): 1139-1150.
[17] 张磊, 刘建伟, 罗雄麟. 基于KNN和RVM的分类方法: KNN-RVM分类器[J]. 模式识别与人工智能, 2010, 23(3): 376-384.
[17] ZHANG Lei, LIU Jianwei, LUO Xionglin. KNN and RVM based classification method: KNN-RVM classifier[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 376-384.
[18] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024.
[18] CHEN Xi, LUO Gaochao, CAO Jie, et al. Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024.
[19] 王栋璀, 丁云飞, 朱晨烜. 基于中智KNN的齿轮箱故障诊断方法[J]. 振动与冲击, 2019, 38(20): 148-153.
[19] WANG Dongcui, DING Yunfei, ZHU Chenxuan. A fault diagnosis method for gearbox based on neutrosophic K-Nearest Neighbor[J]. Journal of Vibration and Shock, 2019, 38(20): 148-153.
[20] 刘凡, 张昀, 姚晓, 等. 基于K近邻算法的换流变压器局部放电模式识别[J]. 电力自动化设备, 2013, 33(5): 89-93.
[20] LIU Fan, ZHANG Yun, YAO Xiao, et al. Recognition of PD mode based on KNN algorithm for converter transformer[J]. Electric Power Automation Equipment, 2013, 33(5): 89-93.
Outlines

/