Journal of Shanghai Jiaotong University >
Off-Axis Tensile Test and Numerical Simulation of Unidirectional Thermoplastic Composite Laminates
Received date: 2021-09-14
Revised date: 2021-10-27
Accepted date: 2021-11-05
Online published: 2022-11-25
As a high-performance thermoplastic composite material, AS4/PEEK has been widely used in aerospace, military, automotive, and other fields. After conducting the off-axial tensile test of unidirectional AS4/PEEK laminates with different angles, the relevant stress-strain curves and tensile strengths, as well as fracture plane angles are obtained. In simulation, a 3D elastic-plastic model where the parameters are determined by trust-region reflective algorithm is used to describe the nonlinear mechanical behavior of AS4/PEEK laminates. In combination with the LaRC05 criterion and the crack zone theory, a user material subroutine VUMAT based on Abaqus is developed and applied to the numerical simulation of off-axis tensile test. The numerical results show that the 3D elastic-plastic damage constitutive model can accurately simulate the plastic effect of AS4/PEEK laminates and the tensile strength predicted by the numerical method agrees well with those from the test. The proposed 3D elastic-plastic damage model provides an accurate and effective method for the comprehensive analysis of plastic deformation and damage of thermoplastic composites.
Key words: AS4/PEEK; off-axial tension; plastic model; LaRC05; crack band theory
ZHANG Jian, CHEN Xiuhua, CHEN Yong, FANG Yin . Off-Axis Tensile Test and Numerical Simulation of Unidirectional Thermoplastic Composite Laminates[J]. Journal of Shanghai Jiaotong University, 2023 , 57(2) : 201 -212 . DOI: 10.16183/j.cnki.jsjtu.2021.352
[1] | 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006. |
[1] | SHEN Guanlin, HU Gengkai. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006. |
[2] | 王昌斌, 方程, 李晔. 国内外连续玻纤增强热塑性复合材料现状[J]. 汽车文摘, 2020(9): 12-16. |
[2] | WANG Changbin, FANG Cheng, LI Ye. Current status of continuous glass fiber reinforced thermoplastic composites at home and abroad[J]. Automotive Digest, 2020(9): 12-16. |
[3] | 刘士琦, 周红霞, 王玉, 等. 热塑性复合材料的应用研究[J]. 化学与粘合, 2021, 43(1): 72-75. |
[3] | LIU Shiqi, ZHOU Hongxia, WANG Yu, et al. Research progress in the application of environment friendly thermoplastic composite materials[J]. Chemistry and Adhesion, 2021, 43(1): 72-75. |
[4] | 见雪珍, 杨洋, 袁协尧, 等. 商用客机连续纤维增强热塑性复合材料的现状及其发展趋势[J]. 上海塑料, 2015(2): 17-22. |
[4] | JIAN Xuezhen, YANG Yang, YUAN Xieyao, et al. Status and development trend of continuous fiber reinforced thermoplastic composites in commercial aircraft[J]. Shanghai Plastics, 2015(2): 17-22. |
[5] | LAFARIE-FRENOT M C, TOUCHARD F. Comparative in-plane shear behaviour of long-carbon-fibre composites with thermoset or thermoplastic matrix[J]. Composites Science and Technology, 1994, 52(3): 417-425. |
[6] | WANG S Y, ZHANG J Z, FANG G D, et al. Mathematical description of mechanical behavior of woven fabric reinforced PPS-based composites at high temperature[J]. Polymer Composites, 2019, 40(3): 1097-1103. |
[7] | TAN W, FALZON B G. Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading[J]. Composites Science and Technology, 2016, 126: 60-77. |
[8] | 陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 34(4): 545-557. |
[8] | CHEN Jingfen. Failure loads prediction of composite laminates using a combined elastoplastic damage model[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 545-557. |
[9] | 胡祎乐, 余音, 汪海, 等. 纤维增强复合材料机翼长桁压缩破坏预测方法[J]. 上海交通大学学报, 2012, 46(9): 1471-1475. |
[9] | HU Yile, YU Yin, WANG Hai, et al. A failure prediction method of fiber-reinforced composite wing stringer subjected to compressive loading[J]. Journal of Shanghai Jiao Tong University, 2012, 46(9): 1471-1475. |
[10] | 刘魏光, 余音, 汪海. 考虑剪切非线性的复合材料渐进损伤模型[J]. 上海交通大学学报, 2016, 50(2): 194-199. |
[10] | LIU Weiguang, YU Yin, WANG Hai. A damage model considering shear nonlinearity for progressive failure analysis of composite laminates[J]. Journal of Shanghai Jiao Tong University, 2016, 50(2): 194-199. |
[11] | 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7): 1878-1888. |
[11] | TUO Hongliang, MA Xiaoping, LU Zhixian. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1878-1888. |
[12] | 兰剑, 谢官模, 夏俊康, 等. 复合材料开孔层合板双轴拉伸的渐进损伤[J]. 材料科学与工程学报, 2020, 38(2): 214-219. |
[12] | LAN Jian, XIE Guanmo, XIA Junkang, et al. Progressive damage of composite perforated laminates under biaxial tensile loading[J]. Journal of Materials Science and Engineering, 2020, 38(2): 214-219. |
[13] | 何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075. |
[13] | HE Boling, GE Dongyun. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075. |
[14] | ZHUANG F J, ARTEIRO A, FURTADO C, et al. Mesoscale modelling of damage in single-and double-shear composite bolted joints[J]. Composite Structures, 2019, 226: 111210. |
[15] | ZHOU J J, WEN P H, WANG S N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 225: 111113. |
[16] | MOHAMMADI B, MAHMOUDI A. Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach[J]. Theoretical and Applied Fracture Mechanics, 2018, 95: 18-27. |
[17] | LI X, MA D Y, LIU H F, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 207: 727-739. |
[18] | MAA R H, CHENG J H. A CDM-based failure model for predicting strength of notched composite laminates[J]. Composites Part B: Engineering, 2002, 33(6): 479-489. |
[19] | XIAO X R. Modeling energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials, 2009, 43(5): 427-444. |
[20] | LADEVEZE P, LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology, 1992, 43(3): 257-267. |
[21] | SUN C T, CHEN J L. A simple flow rule for characterizing nonlinear behavior of fiber composites[J]. Journal of Composite Materials, 1989, 23(10): 1009-1020. |
[22] | HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. |
[23] | PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19/20): 2313-2341. |
[24] | BA?ANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177. |
[25] | ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-17[S/OL]. (2017-12-11) [2021-09-14]. https://www.astm.org/d3039_d3039 m-17.html. |
[26] | WEEKS C A, SUN C T. Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Composites Science and Technology, 1998, 58(3/4): 603-611. |
[27] | WANG J, XIAO Y. Some improvements on Sun-Chen’s one-parameter plasticity model for fibrous composites. Part I: Constitutive modelling for tension-compression asymmetry response[J]. Journal of Composite Materials, 2017, 51(3): 405-418. |
[28] | JANG J, JEON S Y, CHOI J H, et al. Mechanical analysis of fiber-reinforced plastics using an elastoplastic-damage constitutive equation considering asymmetric material behavior[J]. Composite Structures, 2021, 272: 114268. |
[29] | PINHO S T, IANNUCCI L, ROBINSON P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 766-777. |
[30] | EGAN B. Finite element modelling and high speed testing of countersunk composite aircraft joints[D]. Limerick: University of Limerick, 2014. |
[31] | DONADON M V, DE ALMEIDA S F M, ARBELO M A, et al. A three-dimensional ply failure model for composite structures[J]. International Journal of Aerospace Engineering, 2009, 2009: 486063. |
[32] | MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152. |
[33] | LIU H B, LIU J, KABOGLU C, et al. Experimental and numerical studies on the behaviour of fibre-reinforced composites subjected to soft impact loading[J]. Procedia Structural Integrity, 2019, 17: 992-1001. |
[34] | REN R, LE G G, ZHONG J L, et al. Numerical research on elasto-plastic behaviors of fiber-reinforced polymer based composite laminates[J]. Composite Structures, 2019, 207: 364-372. |
[35] | LIU H B, LIU J, DING Y Z, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites[J]. Composites Part B: Engineering, 2020, 201: 108389. |
[36] | 李璇, 陈秀华, 史晓辉, 等. 考虑双模量影响的复合材料销钉连接失效分析[J]. 上海交通大学学报, 2015, 49(1): 101-108. |
[36] | LI Xuan, CHEN Xiuhua, SHI Xiaohui, et al. Effect of bimodularity on failure behaviors of pinned-joint composite laminates[J]. Journal of Shanghai Jiao Tong University, 2015, 49(1): 101-108. |
/
〈 |
|
〉 |