Naval Architecture, Ocean and Civil Engineering

Collision Simulation Method and Protection Mechanism of Composite Fenders for Ships

Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. Marine Design and Research Institute of China, Shanghai 200011, China

Received date: 2022-03-21

  Revised date: 2022-07-19

  Accepted date: 2022-07-22

  Online published: 2022-10-27

Abstract

Fenders play an important protective role in ship collisions, but there are few studies related to the collision simulation methods and the protection mechanism of composite fenders. First, aimed at the new composite fender design scheme proposed in this paper and based on the material properties exhibited in the test, low-density foam and hyperelastic models are selected to simulate the inner foam and outer polyurethane of the fender, respectively. Subsequently, for the hull-fender-quay collision problem, a multi-body geometry model is established and a collision simulation method is formed to analyze the fender protection mechanism from the perspective of energy conversion. It is proved that the composite material has a better protection effect on the hull structure than the rubber fender. Finally, the inner foam strength, hull stiffness, outer polyurethane thickness, and tensile strength of composite materials are varied to analyze the protection mechanism of composite materials respectively. The results show that the relative stiffness of the fender and the structure is the main factor affecting the protection performance. The inner foam of the composite fender is the main energy-absorbing structure, absorbing the kinetic energy of the hull through compression deformation to reduce the response of the structure, while the outer polyurethane mainly plays the role of protecting the core.

Cite this article

LI Muzhi, BAO Wenqian, WANG Xiucheng, ZHANG Yiming, YUAN Yuchao, TANG Wenyong . Collision Simulation Method and Protection Mechanism of Composite Fenders for Ships[J]. Journal of Shanghai Jiaotong University, 2023 , 57(6) : 680 -689 . DOI: 10.16183/j.cnki.jsjtu.2022.075

References

[1] 吴立洋, 王华荣, 张新福, 等. 新型护舷并靠状态下低速碰撞性能评估比较[J]. 舰船科学技术, 2021, 43(13): 27-32.
[1] WU Liyang, WANG Huarong, ZHANG Xinfu, et al. Comparison on low-speed collision performance of new-type fenders between two side-by-side ships[J]. Ship Science and Technology, 2021, 43(13): 27-32.
[2] 张建, 唐文献. 鼓型橡胶护舷非线性有限元分析及试验验证[J]. 船舶工程, 2012, 34(3): 21-23.
[2] ZHANG Jian, TANG Wenxian. Nonlinear finite element analysis and experimental verification of cell rubber fender[J]. Ship Engineering, 2012, 34(3): 21-23.
[3] JIANG Z Y, GU M T. Optimization of a fender structure for the crashworthiness design[J]. Materials & Design, 2010, 31(3): 1085-1095.
[4] 韩建南. 橡胶护舷在桥墩防撞方面的效应分析[D]. 重庆: 重庆交通大学, 2017.
[4] HAN Jiannan. Study about the device of rubber in pier antionllision aspects[D]. Chongqing: Chongqing Jiaotong University, 2017.
[5] 蒋致禹, 顾敏童, 谢仲安, 等. 基于非线性数值模拟的工程船靠泊响应研究[J]. 振动与冲击, 2010, 29(9): 181-184.
[5] JIANG Zhiyu, GU Mintong, XIE Zhongan, et al. Influence of crack on vibration and acoustic radiation characteristics of three-dimensional elastic body of gear structure[J]. Journal of Vibration and Shock, 2010, 29(9): 181-184.
[6] 彭达. 船桥碰撞仿真与新型桥梁防护装置性能研究[D]. 北京: 北京交通大学, 2018.
[6] PENG Da. Simulation of ship-bridge collision and research on the performance of new bridge protective device[D]. Beijing: Beijing Jiaotong University, 2018.
[7] 陈巍, 耿波, 沈锐利, 等. 转筒式钢-复合材料套箱防船撞性能研究[J]. 防灾减灾工程学报, 2020, 40(6): 936-944.
[7] CHEN Wei, GENG Bo, SHEN Ruili, et al. Study on anticollision performance of rotary cylinder typed steel composite boxed cofferdam[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6): 936-944.
[8] 付远超, 方明霞, 蒋超. 复合材料桥梁防撞护舷碰撞特性研究[J]. 机械科学与技术, 2016, 35(5): 784-789.
[8] FU Yuanchao, FANG Mingxia, JIANG Chao. Collision performance analysis of composite anti-collision fender for bridges[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(5): 784-789.
[9] ABOSHIO A, UCHE A O, AKAGWU P, et al. Reliability-based design assessment of offshore inflatable barrier structures made of fibre-reinforced composites[J]. Ocean Engineering, 2021, 233: 109016.
[10] 方涵, 潘晋, 吴亚锋, 等. 桥梁复合材料防车撞结构的耐撞性影响因素分析[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(3): 507-511.
[10] FANG Han, PAN Jin, WU Yafeng, et al. Crashworthiness parameters analysis of bridge composite protection structures[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(3): 507-511.
[11] 潘晋, 方涵, 吴亚锋, 等. 桥墩复合材料防车撞结构碰撞性能试验研究[J]. 华中科技大学学报(自然科学版), 2018, 46(10): 14-20.
[11] PAN Jin, FANG Han, WU Yafeng, et al. Experimental study on performance of composite protection structure for bridge pier against vehicle collision[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2018, 46(10): 14-20.
[12] DJAMALUDDIN F, MAT F. Optimization and crush characteristic of foam-filled fender subjected to transverse loads[J]. Ocean Engineering, 2021, 242: 110085.
[13] SUN G, ZHEN W, HANG Y, et al. Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures[J]. Composite Structures, 2019, 209: 535-547.
[14] 中国石油和化学工业联合会. 橡胶护舷: HG/T 2866—2016[S]. 北京: 中国标准出版社, 2016.
[14] China Petroleum and Chemical Industry Federation. Rubber fender: HG/T 2866—2016[S]. Beijing: Standards Press of China, 2016.
[15] 中国轻工业联合会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2020[S]. 北京: 中国标准出版社, 2020.
[15] China National Light Industry Council. Rigid cellular plastics—Determination of compression properties: GB/T 8813—2020[S]. Beijing: Standards Press of China, 2020.
[16] 中国轻工业联合会. 硬质泡沫塑料拉伸性能试验方法: GB/T 9641—1988[S]. 北京: 中国标准出版社, 1988.
[16] China National Light Industry Council. The method for tensile properties of rigid cellular plastics: GB/T 9641—1988[S]. Beijing: Standards Press of China, 1988.
[17] 中国石油和化学工业联合会. 硫化橡胶或热塑性橡胶压缩应力应变性能的测定: GB/T 7757—2009[S]. 北京: 中国标准出版社, 2009.
[17] China Petroleum and Chemical Industry Federation. Rubber, vulcanized or thermoplastic—Determination of compression stress-strain properties: GB/T 7757—2009[S]. Beijing: Standards Press of China, 2009.
[18] 中国石油和化学工业联合会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.
[18] China Petroleum and Chemical Industry Federation. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009.
[19] 中国船级社. 材料与焊接规范[EB/OL]. (2022-06-01)[2022-08-12]. https://www.ccs.org.cn/ccswz/articleDetail?id=202206060318033935.
[19] China Classification Society. Rules of materials and welding[EB/OL]. (2022-06-01)[2022-08-12]. https://www.ccs.org.cn/ccswz/articleDetail?id=202206060318033935..
[20] LANGSETH M, HOPPERSTAD O S. Static and dynamic axial crushing of square thin-walled aluminium extrusions[J]. International Journal of Impact Engineering, 1996, 18: 949-968.
[21] LUONG D D, PINISETTY D, GUPTA N. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art[J]. Composites Part B: Engineering, 2013, 44(1): 403-416.
Outlines

/