Naval Architecture, Ocean and Civil Engineering

Unsteady Evolution Law and Evaluation Index of Shallow Sea Wind-Wave-Current-Seabed Coupling Field

Expand
  • Department of Civil and Airport Engineering;Jiangsu Airport Infrastructure Safety Engineering Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2022-03-14

  Revised date: 2022-05-12

  Accepted date: 2022-06-06

  Online published: 2022-08-23

Abstract

There is a strong real-time coupling between seabed topography and wave field, current field and wind field in shallow water area. The existing analysis model cannot directly consider the influence factors of seabed, and it is more difficult to explain the unsteady evolution mechanism of the coupling field between typical seabed topography and wave, shear flow and gradient wind. Based on the secondary development of STAR-CCM+platform, the shallow sea wind-wave-current numerical pool is constructed under four typical seabed landform conditions: seabed plain, seabed slope, trough, and flat landform. The multi-layer particle velocity coupling method is proposed and the multi-layer wind-wave-current coupling model is established. The wind-wave-current decoupling is realized at the initial time. The temporal and spatial evolution laws of wave field, current field, and wind field in different seabed topographies are compared and analyzed. The principal component analysis method is introduced to evaluate the unsteady effect of wind-wave-current in various typical seabed topographies, and the unsteady evaluation index of the whole life cycle of the wind-wave-current-seabed coupling field is established. The results show that the multi-layer wind-wave-current coupling model can more truly reflect the influence of vertical wind speed and uneven velocity distribution on wave field. The seabed topography can lead to a multi-stage time-history distribution of wave field in the evolution process. The flat topography, submarine slope, and trough conditions are divided into wave surface surge, attenuation, and stability stages. The submarine plain conditions are divided into external breaking wave, internal breaking wave, and climbing stage. The evolution of the current field presents a multi-stage spatial distribution, and the seabed leads to the formation of multi-vortex accumulation or multi-vortex coexistence in the current field. The coupling evolution of wind-wave-current-seabed has an amplification effect on the wind profile index, and positive relationship between seabed height and wind profile coefficient. The end-stage unsteady evaluation indices of flat landform, submarine plain, submarine slope, and trough are 0.268, 4.612, 0.672, and 0.926, respectively.

Cite this article

CHEN Jing, KE Shitang, LI Wenjie, ZHU Tingrui, YUN Yiwen, REN Hehe . Unsteady Evolution Law and Evaluation Index of Shallow Sea Wind-Wave-Current-Seabed Coupling Field[J]. Journal of Shanghai Jiaotong University, 2023 , 57(6) : 666 -679 . DOI: 10.16183/j.cnki.jsjtu.2022.065

References

[1] 在“十四五”时期协调推进海洋资源保护与开发推进海洋强国建设[N]. 人民政协报, 2020-11-05(4).
[1] Coordinate the protection and development of marine resources and promote the construction of marine power in the ‘14th Five-Year’period[N]. People’s Political Consultative Conference, 2020-11-05(4).
[2] 中交第一航务工程勘察设计院有限公司. 港口与航道水文规范: JTS 145—2015[S]. 北京: 人民交通出版社, 2015.
[2] CCCC First Navigation Engineering Survey and Design Institute Co., Ltd.. Code of harbor and channel hydrology: JTS 145—2015[S]. Beijing: The People’s Communication Press, 2015.
[3] Det Norske Verital AS. Environmental conditions and environmental loads: DNV-RP-C205[S]. Norway: DNV, 2010: 59-127.
[4] 聂隆锋, 赵西增, 张志杭, 等. 基于VPM-THINC/QQ模型的波浪高保真模拟[J]. 力学学报, 2019, 51(4): 1043-1053.
[4] NIE Longfeng, ZHAO Xizeng, ZHANG Zhihang, et al. High-fidelity simulation of wave propagation based on VPM-THINC/QQ model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053.
[5] 季顺迎, 田于逵, 基于多介质、多尺度离散元方法的冰载荷数值冰水池[J]. 力学学报, 2021, 53(9): 2427-2453.
[5] JI Shunying, TIAN Yukui. Numerical ice tank for ice loads based on multi-medium and multi-scale discrete element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2427-2453.
[6] 柯世堂, 王硕, 张伟, 等. 风、浪、流多场耦合作用波浪传播演化机理对比分析[J]. 哈尔滨工程大学学报, 2021, 42(9): 1312-1320.
[6] KE Shitang, WANG Shuo, ZHANG Wei, et al. Comparative analysis of the mechanism of wave propagation and evolution under the coupling effect of wind, waves, and currents[J]. Journal of Harbin Engineering University, 2021, 42(9): 1312-1320.
[7] 张卓, 宋志尧, 孔俊. 波流共同作用下流速垂线分布及其影响因素分析[J]. 水科学进展, 2010, 21(6): 801-807.
[7] ZHANG Zhuo, SONG Zhiyao, KONG Jun. Wave-current interaction effects on velocity profiles and influencing factor analysis[J]. Advances in Water Science, 2010, 21(6): 801-807.
[8] 杨师宇, 吴静萍, 汪敏, 等. 基于去奇异边界元法的二维数值波浪水池计算参数影响分析[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(5): 912-918.
[8] YANG Shiyu, WU Jingping, WANG Min, et al. Influence analysis of calculation parameters in two-dimensional numerical wave tank based on dbiem[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(5): 912-918.
[9] 刘红兵, 陈国明, 吕涛, 等. 海洋工程数值风-浪-流水池模拟及分析[J]. 中国海上油气, 2019, 31(6): 154-159.
[9] LIU Hongbing, CHEN Guoming, LYU Tao, et al. Ocean engineering numerical simulation and analysis in the wind-wave-current pool[J]. China Offshore Oil and Gas, 2019, 31(6): 154-159.
[10] LIU Z, LIN Z, LIAO S. Phase velocity effects of the wave interaction with exponentially sheared current[J]. Wave Motion, 2014, 51(6): 967-985.
[11] CHEN H, ZOU Q. Effects of following and opposing vertical current shear on nonlinear wave interactions[J]. Applied Ocean Research, 2019, 89: 23-35.
[12] 何广华, 荆芃霖, 王威, 等. 垂荡双箱间窄缝水动力共振特性[J]. 哈尔滨工程大学学报, 2021, 42(11): 1588-1595.
[12] HE Guanghua, JING Penglin, WANG Wei, et al. Characteristics of hydrodynamic resonance in a narrow gap between two heaving boxes[J]. Journal of Harbin Engineering University, 2021, 42(11): 1588-1595.
[13] 杨云涛, 朱仁传, 蒋银, 等. 三维无反射数值波浪水池及波浪与结构物相互作用的模拟[J]. 上海交通大学学报, 2018, 52(3): 253-260.
[13] YANG Yuntao, ZHU Renchuan, JIANG Yin, et al. Simulation of 3-D viscous non-reflection numerical wave tank and the interactions of waves and structures[J]. Journal of Shanghai Jiao Tong University, 2018, 52(3): 253-260.
[14] 吴乘胜, 朱德祥, 顾民. 数值波浪水池及顶浪中船舶水动力计算[J]. 船舶力学, 2008(2): 168-179.
[14] WU Chengsheng, ZHU Dexiang, GU Min. Computation of hydrodynamic forces for a ship in regular heading waves by a viscous numerical wave tank[J]. Journal of Ship Mechanics, 2008(2): 168-179.
[15] PEREGRINE D H. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4): 815-827.
[16] BLENKINSOPP C, CHAPLIN J. The effect of relative crest submergence on wave breaking over submerged slopes[J]. Coastal Engineering, 2008, 55: 967-974.
[17] 李玉成, 于洋, 崔丽芳, 等. 平缓岸坡上波浪破碎的实验研究[J]. 海洋通报, 2000(1): 10-18.
[17] LI Yucheng, YU Yang, CUI Lifang, et al. Experimental study of wave breaking on gentle slope[J]. Marine Science Bulletin, 2000(1): 10-18.
[18] LAMB K G. Internal wave breaking and dissipation mechanisms on the continental slope/shelf[J]. Annual Review of Fluid Mechanics, 2014, 46: 231-254.
[19] YAO Y, HUANG Z, MONISMITH S G, et al. Characteristics of monochromatic waves breaking over fringing reefs[J]. Journal of Coastal Research, 2013, 29(1): 94-104.
[20] 郅长红, 陈科, 尤云祥. 弱非线性内孤立波在斜坡上的传播演化特性[J]. 上海交通大学学报, 2021, 55(8): 916-923.
[20] ZHI Changhong, CHEN Ke, YOU Yunxiang. Propagation evolution char acteristics of weakly nonlinear internal solitary waves on slopes[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 916-923.
[21] 孙志伟. 内孤立波在斜坡地形上传播的数值模拟及分析[D]. 大连: 大连理工大学, 2021.
[21] SUN Zhiwei. Numerical simulation and analysis of internal solitary wave propagation on a slope topography[D]. Dalian: Dalian University of Technology, 2021.
[22] 陈洁, 温宁. 南海地球物理图集[M]. 北京: 科学出版社, 2010: 1-8.
[22] CHEN Jie, WEN Ning. Geophysical atlas of the South China Sea[M]. Beijing: Science Press, 2010: 1-8.
[23] 杨涛涛, 吕福亮, 鲁银涛, 等. 南海西沙海域多种海底地貌特征及成因[J]. 海相油气地质, 2021, 26(4): 307-318.
[23] YANG Taotao, Lü Fuliang, LU Yintao, et al. Characteristics and genesis of various seafloor topography in Xisha sea area, South China Sea[J]. Marine Petroleum Geology, 2021, 26(4): 307-318.
[24] KOCHEVSKY A N. Possibilities of simulation of fluid flows using the modern CFD software tools[J]. Physics, 2004, 1: 1-12.
[25] 李邦华, 郑向远, 李炜, 等. 波浪水槽中Stokes五阶波的数值生成[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(2): 238-244.
[25] LI Banghua, ZHENG Xiangyuan, LI Wei, et al. Simulation of fifth-order Stokes waves in the numerical wave flume[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(2): 238-244.
[26] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
[26] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Load code for the design of building structures: GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.
[27] 李伟, 黄焱. 随机海洋环境下基于互相关函数和主成分分析的平台结构损伤辨识[J]. 振动与冲击, 2021, 40(7): 179-187.
[27] LI Wei, HUANG Yan. Damage identification of platform structure based on cross correlation function and PCA in random ocean environment[J]. Journal of Vibration and Shock, 2021, 40(7): 179-187.
Outlines

/