Journal of Shanghai Jiaotong University >
Frequency Control Strategy for Interconnected Power Systems with Time Delay Considering Optimal Energy Storage Regulation
Received date: 2022-04-30
Online published: 2022-10-09
Aimed at the problem of large frequency deviation caused by the source load uncertainty and the communication delay in the interconnected power system, a frequency control strategy for interconnected power systems with time-delay considering energy storage regulation is proposed. An interconnected power grid model with time delay which includes a steam turbine generator, a wind turbine generator, and energy storage equipment is established. According to the area control error (ACE), the energy storage device coordinates the steam turbine generator to participate in the frequency control, and the modified particle swarm optimization (MPSO) algorithm is used to optimize the proportional integral derivative (PID) load frequency controller to realize the secondary frequency adjustment, which improves the frequency stability of the load frequency control (LFC) system in a certain time-delay interval. A fractional order PID (FOPID) controller is designed for the energy storage device to adjust the output power and smooth the source load fluctuation. The frequency control performance of the energy storage system is improved to further control the frequency deviation of the interconnected power system. Different working conditions are compared and analyzed on the MATLAB/Simulink platform to verify the effectiveness of the proposed frequency control strategy.
FU Yang, DING Zhiyin, MI Yang . Frequency Control Strategy for Interconnected Power Systems with Time Delay Considering Optimal Energy Storage Regulation[J]. Journal of Shanghai Jiaotong University, 2022 , 56(9) : 1128 -1138 . DOI: 10.16183/j.cnki.jsjtu.2022.145
[1] | 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
[1] | HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. |
[2] | 张鹏飞, 徐静怡, 郭巍, 等. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
[2] | ZHANG Pengfei, XU Jingyi, GUO Wei, et al. Low-carbon transformation of the power system in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 293-302. |
[3] | 单华, 和婧, 范立新, 等. 面向抽水蓄能电站区域负荷频率的分数阶PID控制研究[J]. 电网技术, 2020, 44(4): 1410-1418. |
[3] | SHAN Hua, HE Jing, FAN Lixin, et al. Research on fractional order PID control of regional load frequency of pumped storage power station[J]. Power System Technology, 2020, 44(4): 1410-1418. |
[4] | 熊林云, 王杰. 三区延迟电力系统鲁棒负荷频率控制研究[J]. 电网技术, 2018, 42(3): 894-902. |
[4] | XIONG Linyun, WANG Jie. Study of load frequency control for three-area time-delayed power system[J]. Power System Technology, 2018, 42(3): 894-902. |
[5] | GHAFOURI A, MILIMONFARED J, GHAREHPETIAN G B. Coordinated control of distributed energy resources and conventional power plants for frequency control of power systems[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 104-114. |
[6] | 张振军, 孙军, 覃杰. 计及时延的互联电力系统分散式阻尼控制[J]. 电测与仪表, 2017, 54(11): 84-88. |
[6] | ZHANG Zhenjun, SUN Jun, QIN Jie. Decentralized damping control of interconnected power system with time delay[J]. Electric Measurement & Instrumentation, 2017, 54(11): 84-88. |
[7] | MILANO F, ANGHEL M. Impact of time delays on power system stability[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(4): 889-900. |
[8] | 陈中, 唐浩然, 严绍兴, 等. 基于时滞灵敏度和多目标优化的广域电力系统稳定器参数设计[J]. 电力自动化设备, 2019, 39(10): 208-214. |
[8] | CHEN Zhong, TANG Haoran, YAN Shaoxing, et al. Parameter design of wide area power system stabilizer based on time delay sensitivity and multi-objective optimization[J]. Electric Power Automation Equipment, 2019, 39(10): 208-214. |
[9] | 钱伟, 吴嘉欣, 费树岷. 基于时滞依赖矩阵泛函的变时滞电力系统稳定性分析[J]. 电力系统自动化, 2020, 44(1): 53-58. |
[9] | QIAN Wei, WU Jiaxin, FEI Shumin. Analysis on power systems stability with time-varying delay based on delay-dependent matrix functional[J]. Automation of Electric Power Systems, 2020, 44(1): 53-58. |
[10] | 邹朋, 江伟, 王渝红, 等. 交直流混联电力系统频率协调控制策略[J]. 水电能源科学, 2017, 35(3): 182-185. |
[10] | ZHOU Peng, JIANG Wei, WANG Yuhong, et al. Frequency control strategy for AC-DC hybrid power system[J]. Water Resourses and Power, 2017, 35(3): 182-185. |
[11] | 李晓萌, 贾宏杰, 穆云飞, 等. 时滞环境下基于电动汽车与电热泵的协调频率控制[J]. 电力自动化设备, 2020, 40(4): 88-95. |
[11] | LI Xiaomeng, JIA Hongjie, MU Yunfei, et al. Coordinated frequency control based on electric vehicles and heat pumps considering time-delay[J]. Electric Power Automation Equipment, 2020, 40(4): 88-95. |
[12] | KHOOBAN M. Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7416-7422. |
[13] | 米阳, 徐怡雯, 时帅, 等. 新型时滞可再生电力系统集成模型的滑模负荷频率控制设计[J]. 中国电机工程学报, 2022, 42(11): 3953-3962. |
[13] | MI Yang, XU Yiwen, SHI Shuai, et al. Sliding mode load frequency control design for the novel integrated model of time-delay renewable power system[J]. Proceedings of the CSEE, 2022, 42(11): 3953-3962. |
[14] | 孔繁镍, 李啸骢, 吴杰康, 等. 基于尼科尔斯PID设计方法的负荷频率控制[J]. 中国电机工程学报, 2012, 32(22): 79-85. |
[14] | KONG Fannie, LI Xiaocong, WU Jiekang, et al. Design of Nichols PID controller for load frequency control[J]. Proceedings of the CSEE, 2012, 32(22): 79-85. |
[15] | TAN W. Tuning of PID load frequency controller for power systems[J]. Energy Conversion and Management, 2009, 50(6): 1465-1472. |
[16] | VILANOVA R, ALFARO V M. Fragility and robustness level accomplishment of well known PI/PID robust tuning rules[C]// 2011 9th IEEE International Conference on Control and Automation. Santiago, Chile: IEEE, 2011: 231-236. |
[17] | 姜惠兰, 蔡继朝, 肖瑞, 等. 一种提高系统频率响应特性的风储协调控制策略[J]. 电力自动化设备, 2021, 41(7): 44-51. |
[17] | JING Huilan, CAI Jizhao, XIAO Rui, et al. A wind-storage coordinated control strategy for improving system frequency response characteristics[J]. Electric Power Automation Equipment, 2021, 41(7): 44-51. |
[18] | 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略[J]. 电力系统自动化, 2021, 45(19): 52-59. |
[18] | LI Junhui, GAO Zhuo, LI Cuiping, et al. Control strategy for dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage[J]. Automation of Electric Power Systems, 2021, 45(19): 52-59. |
[19] | CHENG Y, TABRIZI M, SAHNI M, et al. Dynamic available AGC based approach for enhancing utility scale energy storage performance[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1070-1078. |
[20] | 丁冬, 刘宗歧, 杨水丽, 等. 基于模糊控制的电池储能系统辅助AGC调频方法[J]. 电力系统保护与控制, 2015, 43(8): 81-87. |
[20] | DING Dong, LIU Zongqi, YANG Shuili, et al. Battery energy storage aid automatic generation control for load frequency control based on fuzzy control[J]. Power System Protection and Control, 2015, 43(8): 81-87. |
[21] | 王荣林, 陆宝春, 侯润民, 等. 交流伺服系统分数阶PID改进型自抗扰控制[J]. 中国机械工程, 2019, 30(16): 1989-1995. |
[21] | WANG Ronglin, LU Baochun, HOU runmin, et al. FOPID improved ADRC in AC servo systems[J]. China Mechanical Engineering, 2019, 30(16): 1989-1995. |
[22] | 张文静, 曹博文, 李宽欣, 等. 中速磁悬浮列车的分数阶运行控制方法[J]. 铁道学报, 2022, 44(2): 42-48. |
[22] | ZHANG Wenjing, CAO Bowen, LI Kuanxin, et al. A fractional order operation control method for medium-speed maglev trains[J]. Journal of the China railway society, 2022, 44(2): 42-48. |
[23] | 米阳, 王鹏, 邓锦, 等. 孤岛交直流混合微电网群分层协调控制[J]. 电力系统保护与控制, 2021, 49(20): 1-8. |
[23] | MI Yang, WANG Peng, DENG Jin, et al. Hierarchical coordinated control of island AC/DC hybrid microgrids[J]. Power System Protection and Control, 2021, 49(20): 1-8. |
[24] | CHEN S, ZHANG T, GOOI H B, et al. Penetration rate and effectiveness studies of aggregated BESS for frequency regulation[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 167-177. |
[25] | ALMASRI H M K, ALMEHIZIA A A, EHSANI M. Accurate wind turbine annual energy computation by advanced modeling[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 1761-1768. |
[26] | DALALA Z M, ZAHID Z U, YU W, et al. Design and analysis of an MPPT technique for small-scale wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2013, 28(3): 756-767. |
[27] | WANG C, MI Y, FU Y, et al. Frequency control of an isolated micro-grid using double sliding mode controllers and disturbance observer[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 923-930. |
[28] | 张逸为, 许德智, 杨玮林, 等. 含混合储能的互联电力系统传感器容错负荷频率控制[J]. 控制与决策, 2021, 36(5): 1069-1077. |
[28] | ZHANG Yiwei, XU Dezhi, YANG Weilin, et al. Sensor fault-tolerant load frequency control for multi-area interconnected power system with hybrid energy storage system[J]. Control and Decision, 2021, 36(5): 1069-1077. |
[29] | 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198. |
[29] | WANG Yufei, YANG Mingcheng, XUE Hua, et al. Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric Power Automation Equipment, 2021, 41(10): 192-198. |
[30] | 蔡晖, 高伯阳, 祁万春, 等. “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021, 55(12): 1608-1618. |
[30] | CAI Hui, GAO Boyang, QI Wanchun, et al. A coordination control strategy of interline power flow controller in carbon peaking and carbon neutrality[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1608-1618. |
[31] | 李欣煜, 周建萍, 李泓青, 等. 基于粒子群算法的微电网实时功率均分的改进下垂控制策略[J]. 高电压技术, 2018, 44(10): 3425-3432. |
[31] | LI Xinyu, ZHOU Jianping, LI Hongqing, et al. Improved droop control strategy for real-time power sharing of microgrid based on particle swarm optimization[J]. High Voltage Engineering, 2018, 44(10): 3425-3432. |
[32] | HSU C. Fractional order PID control for reduction of vibration and noise on induction motor[J]. IEEE Transactions on Magnetics, 2019, 55(11): 1-7. |
[33] | HOSSEIN M, SEYED A T, MOHSEN R, et al. DFIG performance improvement in grid connected mode by using fractional order PI controller[J]. International Journal of Electrical Power & Energy Systems, 2018, 96: 398-411. |
/
〈 |
|
〉 |