New Type Power System and the Integrated Energy

A Shared Energy Storage Optimal Operation Method Considering the Risk of Probabilistic Voltage Unbalance Factor Limit Violation

Expand
  • 1. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China

Received date: 2021-11-11

  Online published: 2022-08-16

Abstract

The distributed access with single-phase and uncertain generation of the renewable energy increase the risk of voltage unbalance limit violation in the distribution network. With the increasing penetration rate of the renewable energy generation, it is important to study the mitigation of the impacts of intermittent renewable energy generation on the risk of voltage unbalance limit violation in the distribution network. A shared energy storage allocation strategy and optimal operation method based on global sensitivity analysis (GSA) is proposed. First, a back propagation neural network (BPNN) based probabilistic voltage unbalance factor calculation model for the distribution network is constructed, and the risk index of the distribution network probabilistic voltage unbalance factor limit violation is defined, which can quickly and accurately quantify the impact of uncertain renewable energy generation on the risk of voltage unbalance limit violation in the distribution network. Then, a GSA method based on Wasserstein distance is proposed to identify the critical renewable energy sources affecting the distribution network voltage unbalance. Finally, the GSA-based shared energy storage allocation strategy and the rolling prediction optimization-based operation method of the shared energy storage are proposed. The effectiveness of the proposed method is verified through the simulation analysis of IEEE 123-bus distribution network.

Cite this article

FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan, CHEN Yue . A Shared Energy Storage Optimal Operation Method Considering the Risk of Probabilistic Voltage Unbalance Factor Limit Violation[J]. Journal of Shanghai Jiaotong University, 2022 , 56(7) : 827 -839 . DOI: 10.16183/j.cnki.jsjtu.2021.455

References

[1] 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
[1] HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[2] 屈尹鹏, 孙元章, 徐箭, 等. 基于解析灵敏度的不平衡配电系统分布式发电出力优化[J]. 电力系统自动化, 2021, 45(19): 117-125.
[2] QU Yinpeng, SUN Yuanzhang, XU Jian, et al. Optimization of distributed generation output in unbalanced distribution system based on analytical sensiti-vity[J]. Automation of electric power system, 2021, 45(19): 117-125.
[3] SCHWANZ D, MÖLLER F, RÖNNBERG S K, et al. Stochastic assessment of voltage unbalance due to single-phase-connected solar power[J]. IEEE Transactions on Power Delivery, 2016, 32(2): 852-861.
[4] 徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45(16): 2-13.
[4] XU Xiaoyuan, WANG Han, YAN Zheng, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45(16): 2-13.
[5] 夏元兴, 徐青山, 黄煜, 等. 端对端交易场景下配电网分布式储能的优化配置[J]. 电力系统自动化, 2021, 45(14): 82-89.
[5] XIA Yuanxing, XU Qingshan, HUANG Yu, et al. Optimal configuration of distributed energy storage for distribution network in peer-to-peer transaction scenarios[J]. Automation of Electric Power Systems, 2021, 45(14): 82-89.
[6] LONG C, FARRAG M, HEPBURN D, et al. Point estimate method for voltage unbalance evaluation in residential distribution networks with high penetration of small wind turbines[J]. Energies, 2014, 7(11): 7717-7731.
[7] 国家技术监督局. 电能质量三相电压不平衡: GB/T 15543—2008[S]. 北京: 中国标准出版社, 2008.
[7] The State Bureau of Quality and Technical Supervision. Power quality—Three-phase voltage unbalance: GB/T 15543—2008[S]. Beijing: Standards Press of China, 2008.
[8] 王若丞. 配电网三相不平衡对线损增加率及电压偏移的影响[J]. 电力工程技术, 2017, 36(4): 131-136.
[8] WANG Ruocheng. Influence of distribution network three-phase unbalance on line loss increase rate and voltage offset[J]. Electric Power Engineering Technology, 2017, 36(4): 131-136.
[9] LIU Z, MILANOVIĆ J V. Probabilistic estimation of voltage unbalance in MV distribution networks with unbalanced load[J]. IEEE Transactions on Power Delivery, 2014, 30(2): 693-703.
[10] CHUA K H, LIM Y S, TAYLOR P, et al. Energy storage system for mitigating voltage unbalance on low-voltage networks with photovoltaic systems[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 1783-1790.
[11] TRICHAKIS P, TAYLOR P C, CIPCIGAN L M, et al. An investigation of voltage unbalance in low voltage distribution networks with high levels of SSEG[C]∥Proceedings of the 41st International Universities Power Engineering Conference. Newcastle upon Tyne, England: IEEE, 2006, 1: 182-186.
[12] TRICHAKIS P, TAYLOR P C, LYONS P F, et al. Predicting the technical impacts of high levels of small-scale embedded generators on low-voltage networks[J]. IET Renewable Power Generation, 2008, 2(4): 249-262.
[13] SHAHNIA F, MAJUMDER R, GHOSH A, et al. Sensitivity analysis of voltage imbalance in distribution networks with rooftop PVs[C]∥IEEE PES General Meeting. Minneapolis, USA: IEEE, 2010: 1-8.
[14] PUKHREM S, BASU M, CONLON M F. Probabilistic risk assessment of power quality variations and events under temporal and spatial characteristic of increased PV integration in low-voltage distribution networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3246-3254.
[15] ALAM M J E, MUTTAQI K M, SUTANTO D. Community energy storage for neutral voltage rise mitigation in four-wire multigrounded LV feeders with unbalanced solar PV allocation[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2845-2855.
[16] WANG H, YAN Z, SHAHIDEHPOUR M, et al. Optimal energy storage allocation for mitigating the unbalance in active distribution network via uncertainty quantification[J]. IEEE Transactions on Sustainable Energy, 2020, 12(1): 303-313.
[17] 刘继春, 陈雪, 向月, 等. 考虑用电形态相似度的多用户共享储能投资决策[J]. 全球能源互联网, 2021, 4(01): 95-104.
[17] LIU Jichun, CHEN Xue, XIANG Yue, et al. Investment decision for multi-user shared energy storage considering similarity of daily load profile[J]. Journal of Global Energy Interconnection, 2021, 4(1): 95-104.
[18] 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(04): 360-366.
[18] SUN Cai, CHEN Laijun, QIU Xinjie, et al. A generation-side shared energy storage planning model based on cooperative game[J]. Journal of Global Energy Interconnection, 2019, 2(4): 360-366.
[19] ZHU H, OUAHADA K. Credit-based distributed real-time energy storage sharing management[J]. IEEE Access, 2019, 7: 185821-185838.
[20] RAHBAR K, MOGHADAM M R V, PANDA S K, et al. Shared energy storage management for renewable energy integration in smart grid[C]∥2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference. Minneapolis, USA: IEEE, 2016: 1-5.
[21] 刘敦楠, 赵宁宁, 李鹏飞, 等. 基于“共享储能-需求侧资源”联合跟踪可再生能源发电曲线的市场化消纳模式[J]. 电网技术, 2021, 45(7): 2791-2802.
[21] LIU Dunnan, ZHAO Ningning, LI Pengfei, et al. Market-oriented consumption model based on the joint tracking of renewable energy generation curve of “shared energy storage & demand side resources”[J]. Power System Technology, 2021, 45(7): 2791-2802.
[22] VILLANUEVA D, PAZOS J L, FEIJOO A. Probabilistic load flow including wind power generation[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1659-1667.
[23] 吴巍, 汪可友, 李国杰. 计及光伏发电相关性的多重积分法概率潮流计算[J]. 中国电机工程学报, 2015, 35(3): 568-575.
[23] WU Wei, WANG Keyou, LI Guojie. Probabilistic load flow calculation method based on multiple integral method considering correlation of photovoltaic generation[J]. Proceedings of the CSEE, 2015, 35(3): 568-575.
[24] PILLAY P, MANYAGE M. Definitions of voltage unbalance[J]. IEEE Power Engineering Review, 2001, 21(5): 50-51.
[25] 方斯顿, 程浩忠, 徐国栋, 等. 基于Nataf变换和准蒙特卡洛模拟的随机潮流方法[J]. 电力自动化设备, 2015, 35(8): 38-44.
[25] FANG Sidun, CHENG Haozhong, XU Guodong, et al. Probabilistic load flow method based on Nataf transformation and quasi Monte Carlo simulation[J]. Electric Power Automation Equipment, 2015, 35(8): 38-44.
[26] 朱永利, 尹金良. 人工智能在电力系统中的应用研究与实践综述[J]. 发电技术, 2018, 39(2): 106-111.
[26] ZHU Yongli, YIN Jinliang. Review of research and practice of artificial intelligence application in power systems[J]. Power Generation Technology, 2018, 39(2): 106-111.
[27] 何琨, 严正, 徐潇源, 等. 基于Sobol’法的孤岛微电网潮流全局灵敏度分析[J]. 电力系统自动化, 2018, 42(14): 99-106.
[27] HE Kun, YAN Zheng, XU Xiaoyuan, et al. Sobol’ method based global sensitivity analysis of power flow in islanded microgrid[J]. Automation of electric power system, 2018, 42(14): 99-106.
[28] 王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 44-52.
[28] WANG Han, YAN Zheng, XU Xiaoyuan, et al. Global sensitivity analysis for islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of electric power system, 2019, 43(10): 44-52.
[29] XU X, YAN Z, SHAHIDEHPOUR M, et al. Power system voltage stability evaluation considering renewable energy with correlated variabilities[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3236-3245.
[30] PREECE R, MILANOVIĆ J V. Assessing the applicability of uncertainty importance measures for power system studies[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2076-2084.
[31] HASAN K N, PREECE R, MILANOVIĆ J V. Priority ranking of critical uncertainties affecting small-disturbance stability using sensitivity analysis techniques[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2629-2639.
[32] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and computers in simulation, 2001, 55(1-3): 271-280.
[33] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784.
[34] 肖思男, 吕震宙, 王薇. 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学力学天文学, 2018, 48: 014601.
[34] XIAO Sinan, LU Zhenzhou, WANG Wei. A review of global sensitivity analysis for uncertainty structure[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48: 014601.
[35] VALLENDER S S. Calculation of the Wasserstein distance between probability distributions on the line[J]. Theory of Probability & Its Applications, 1974, 18(4): 784-786.
Outlines

/