A Fault Diagnosis Method Based on Feature Pyramid CRNN Network

Expand
  • Key Laboratory of Modern Measurement and Control Technology of the Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China

Received date: 2021-01-04

  Online published: 2022-03-03

Abstract

Aimed at the problems that the proportion and position of different fault characteristics of equipment components under variable working conditions and variable load in the signal are not fixed, and include the multi-scale complexity of the original vibration signal in a large number of different scenarios, a convolutional recurrent neural network (CRNN) rolling bearing fault diagnosis method based on feature pyramid network (FPN) was proposed. Using the convolution neural network (CNN) framework, the convolution layer of CNN and the long and short-term memory (LSTM) layer of recurrent neural network (RNN) were connected in parallel to form a new CRNN, so as to make full use of the learning ability of CNN to spatial domain information and RNN to time domain information. The weights were shared in each layer to reduce network parameters. A novel feature map was constructed using FPN, and one-dimensional signal and two-dimensional signal formed after stacking were input to extract the feature of the signal collected by the sensor, and realize fault diagnosis. The average diagnostic accuracy of this method is 99.20%, which is at least 3.62% higher than that of the basic neural network model, indicating that this method has a high diagnostic accuracy and a strong robustness. Using the bearing data set of Case Western Reserve University, it is proved that the method has a good universality. The t-SNE method was used to visually analyze the feature learning effect of the model. The results show that different fault category features have good clustering effect.

Cite this article

LIU Xiuli, XU Xiaoli . A Fault Diagnosis Method Based on Feature Pyramid CRNN Network[J]. Journal of Shanghai Jiaotong University, 2022 , 56(2) : 182 -190 . DOI: 10.16183/j.cnki.jsjtu.2021.001

References

[1] 辛玉, 李舜酩, 王金瑞, 等. 基于迭代经验小波变换的齿轮故障诊断方法[J]. 仪器仪表学报, 2018, 39(11):79-86.
[1] XIN Yu, LI Shunming, WANG Jinrui, et al. Gear fault diagnosis method based on iterative empirical wavelet transform[J]. Chinese Journal of Scientific Instrument, 2018, 39(11):79-86.
[2] 陈旭阳, 韩振南, 宁少慧. 自适应改进双树复小波变换的齿轮箱故障诊断[J]. 振动、测试与诊断, 2019, 39(5):1016-1022.
[2] CHEN Xuyang, HAN Zhennan, NING Shaohui. Gearbox fault diagnosis based on adaptive modified dual-tree complex wavelet transform[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(5):1016-1022.
[3] 朱喜华, 李颖晖, 周飞帆, 等. 基于改进EMD算法的永磁同步电机故障特征提取[J]. 微电机, 2011, 44(2):65-69.
[3] ZHU Xihua, LI Yinghui, ZHOU Feifan, et al. Feature extraction for PMSM based on ameliorated EMD arithmetic[J]. Micromotors, 2011, 44(2):65-69.
[4] 高冠琪, 黄伟国, 李宁, 等. 基于时频挤压和阶比分析的变转速轴承故障检测方法[J]. 振动与冲击, 2020, 39(3):205-210.
[4] GAO Guanqi, HUANG Weiguo, LI Ning, et al. Fault detection method for varying rotating speed bearings based on time-frequency squeeze and order analysis[J]. Journal of Vibration and Shock, 2020, 39(3):205-210.
[5] 陈剑, 夏康, 黄凯旋, 等. 基于VMD相对能量熵和自适应ARMA模型的轴承性能退化趋势动态预警[J]. 电子测量与仪器学报, 2020, 34(8):116-123.
[5] CHEN Jian, XIA Kang, HUANG Kaixuan, et al. Dynamic prediction of bearing performance degradation trend based on VMD relative energy entropy and adaptive ARMA model[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(8):116-123.
[6] 王华庆, 任帮月, 宋浏阳, 等. 基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J]. 机械工程学报, 2019, 55(7):35-43.
[6] WANG Huaqing, REN Bangyue, SONG Liuyang, et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancement[J]. Journal of Mechanical Engineering, 2019, 55(7):35-43.
[7] 唐立力. 基于粗糙遗传BP神经网络的滚动轴承故障诊断[J]. 机械工程与自动化, 2018(3):138-140.
[7] TANG Lili. Fault diagnosis on rolling bearing based on rough genetic BP neural network[J]. Mechanical Engineering & Automation, 2018(3):138-140.
[8] 吴伟, 郑娟. 基于BP神经网络的齿轮故障诊断[J]. 机械研究与应用, 2015, 28(1):88-90.
[8] WU Wei, ZHENG Juan. Gear fault diagnosis based on BP neural network[J]. Mechanical Research & Application, 2015, 28(1):88-90.
[9] 张建, 李艳军, 曹愈远, 等. 免疫支持向量机用于航空发动机磨损故障诊断[J]. 北京航空航天大学学报, 2017, 43(7):1419-1425.
[9] ZHANG Jian, LI Yanjun, CAO Yuyuan, et al. Immune SVM used in wear fault diagnosis of aircraft engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1419-1425.
[10] 贺立敏, 王岘昕, 韩冰. 基于随机森林和支持向量机的船舶柴油机故障诊断[J]. 中国航海, 2017, 40(2):29-33.
[10] HE Limin, WANG Xianxin, HAN Bing. Fault diagnosis of marine diesel engine based on random forest and support vector machine[J]. Navigation of China, 2017, 40(2):29-33.
[11] CHENG J, WANG P S, LI G, et al. Recent advances in efficient computation of deep convolutional neural networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1):64-77.
[12] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6):84-90.
[14] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7):134-143.
[14] QU Jianling, YU Lu, YUAN Tao, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):134-143.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 32(5):86-93.
[16] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131.
[16] LI Heng, ZHANG Qing, QIN Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19):124-131.
[17] 韩涛, 袁建虎, 唐建, 等. 基于MWT和CNN的滚动轴承智能复合故障诊断方法[J]. 机械传动, 2016, 40(12):139-143.
[17] HAN Tao, YUAN Jianhu, TANG Jian, et al. An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN[J]. Journal of Mechanical Transmission, 2016, 40(12):139-143.
[18] WU C Z, JIANG P C, FENG P Z, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(22):51-56.
[19] 李东东, 王浩, 杨帆, 等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用, 2018, 45(6):80-87.
[19] LI Dongdong, WANG Hao, YANG Fan, et al. Fault detection of wind turbine planetary gear box using 1D convolution neural networks and soft-max classifier[J]. Electric Machines & Control Application, 2018, 45(6):80-87.
[20] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii, USA: IEEE, 2017: 936-944.
Outlines

/