A Model for Carbon Dioxide Emission Characteristics of Coal-Fired Units for Environment-Economic Dispatch Research

Expand
  • 1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150006, China
    2. Harbin Hongguang Boiler Group Co., Ltd., Harbin 150050, China
    3. State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102211, China
    4. Power Dispatch and Control Center, State Grid Heilongjiang Electric Power Co., Ltd., Harbin 150090, China

Received date: 2021-06-30

  Online published: 2021-12-30

Abstract

In order to accurately quantify the carbon emissions of coal-fired units with different capacities and serve the goal of “carbon peaking and carbon neutrality” in China better, a novel CO2 emission characteristic model for environment-economic dispatch of power systems is established. First, the changes in the capacity and coal consumption of coal-fired units in China in recent years are summarized and analyzed. Then, the relationship between the load rate and CO2 emission intensity is analyzed using the K-Medoide cluster method, and the carbon emission characteristic model of new coal-fired units restricted to basic equations is established. Finally, combined with theoretical analysis and actual data, a simulation is conducted to verify the validity of the model.

Cite this article

ZHANG Zhanpeng, BAN Mingfei, GUO Danyang, CHEN Qichao, JIANG Haiyang . A Model for Carbon Dioxide Emission Characteristics of Coal-Fired Units for Environment-Economic Dispatch Research[J]. Journal of Shanghai Jiaotong University, 2021 , 55(12) : 1663 -1672 . DOI: 10.16183/j.cnki.jsjtu.2021.368

References

[1] 卫志农, 向育鹏, 孙国强, 等. 计及碳排放含有碳捕集电厂电网的多目标动态最优潮流[J]. 电网技术, 2012, 36(12):11-17.
[1] WEI Zhinong, XIANG Yupeng, SUN Guoqiang, et al. Carbon emission-considered multi-objective dynamic optimal power flow of power system containing carbon-capture plant[J]. Power System Technology, 2012, 36(12):11-17.
[2] 周媛, 郑丽凤, 周新年, 等. 基于采伐剩余物的生物质固体燃料生态效益分析[J]. 森林工程, 2018, 34(1):24-29.
[2] ZHOU Yuan, ZHENG Lifeng, ZHOU Xinnian, et al. Eco-benefit evaluation of biomass solid fuel based on forest cutting ResiduesFull text replacement[J]. Forest Engineering, 2018, 34(1):24-29.
[3] 康重庆, 陈启鑫, 夏清. 低碳电力技术的研究展望[J]. 电网技术, 2009, 33(2):1-7.
[3] KANG Chongqing, CHEN Qixin, XIA Qing. Prospects of low-carbon electricity[J]. Power System Technology, 2009, 33(2):1-7.
[4] TANG L, QU J B, MI Z F, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4(11):929-938.
[5] TALAQ J H, EL-HAWARY F, EL-HAWARY M E. A summary of environmental/economic dispatch algorithms[J]. IEEE Transactions on Power Systems, 1994, 9(3):1508-1516.
[6] VENKATESH P, GNANADASS R, PADHY N P. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints[J]. IEEE Transactions on Power Systems, 2003, 18(2):688-697.
[7] S KULKARNI A G K. Combined economic and emission dispatch using improved backpropagation neural network[J]. Electric Machines & Power Systems, 2000, 28(1):31-44.
[8] 刘盛松, 邰能灵, 侯志俭, 等. 基于最优潮流与模糊贴近度的电力系统环境保护研究[J]. 中国电机工程学报, 2003, 23(4):21-26.
[8] LIU Shengsong, TAI Nengling, HOU Zhijian, et al. Study on environmental protection of power systems based on optimal power flow and fuzzy nearness[J]. Proceedings of the CSEE, 2003, 23(4):21-26.
[9] 谭忠富, 于超. 节能减排目标下燃煤机组电量分配模糊优化模型[J]. 电网技术, 2012, 36(1):219-223.
[9] TAN Zhongfu, YU Chao. A fuzzy optimization model for allocation of generated energy among coal-fired units with targets of energy saving and emission reduction[J]. Power System Technology, 2012, 36(1):219-223.
[10] 刘晓, 艾欣, 彭谦. 计及需求响应的含风电场电力系统发电与碳排放权联合优化调度[J]. 电网技术, 2012, 36(1):213-218.
[10] LIU Xiao, AI Xin, PENG Qian. Optimal dispatch coordinating power generation with carbon emission permit for wind farms integrated power grid considering demand response[J]. Power System Technology, 2012, 36(1):213-218.
[11] 陈艺璇, 余涛. 考虑大气污染物时空分布控制的多时间尺度协调多目标优化调度策略[J]. 中国电机工程学报, 2019, 39(8):2280-2296.
[11] CHEN Yixuan, YU Tao. Multi-time scale coordinated and multi-objective optimal dispatch strategy incorporating temporal and spatial distribution control of air pollutants[J]. Proceedings of the CSEE, 2019, 39(8):2280-2296.
[12] ADHINARAYANAN T, SYDULU M. Particle swarm optimisation for economic dispatch with cubic fuel cost function[C]// TENCON 2006-2006 IEEE Region 10 Conference. Piscataway, NJ, USA: IEEE, 2006: 1-4.
[13] KRISHNAMURTHY S, TZONEVA R. Impact of price penalty factors on the solution of the combined economic emission dispatch problem using cubic criterion functions[C]// 2012 IEEE Power and Energy Society General Meeting. Piscataway, NJ, USA: IEEE, 2012: 1-9.
[14] 彭春华. 综合环境保护及竞价风险的发电侧经济运行[J]. 中国电机工程学报, 2008, 28(28):97-102.
[14] PENG Chunhua. Economic operation problem of generating side considering environmental protection and bidding risk[J]. Proceedings of the CSEE, 2008, 28(28):97-102.
[15] 彭春华, 孙惠娟. 基于非劣排序微分进化的多目标优化发电调度[J]. 中国电机工程学报, 2009, 29(34):71-76.
[15] PENG Chunhua, SUN Huijuan. Multi-objective optimization power dispatch based on non-dominated sorting differential evolution[J]. Proceedings of the CSEE, 2009, 29(34):71-76.
[16] ABIDO M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18(4):1529-1537.
[17] 宁志, 丛星亮, 陈永龙. 300 MW和1000 MW燃煤机组能耗和污染物排放特性[J]. 电站辅机, 2019, 40(1):28-33.
[17] NI Zhi, CONG XingLiang, CHEN YongLong. Energy consumption and pollutant emission performance of 300 MW and 1000 MW coal-fired power units[J]. Power Station Auxiliary Equipment, 2019, 40(1):28-33.
[18] 叶勇健. 2030年高效、绿色、灵活、经济的燃煤发电技术路线[J]. 电力科技与环保, 2019, 35(2):28-33.
[18] YE Yongjian. Technological roadmap of coal-fired power featuring in high efficiency, green, flexibility and economical competition up to 2030[J]. Electric Power Technology and Environmental Protection, 2019, 35(2):28-33.
[19] 中电联行业发展与环境资源部. 中国煤电清洁发展报告[J]. 中国电力企业管理, 2017(28):49-51.
[19] Ministry of Industry Development and Environmental Resources at China Electricity Council. China coal power clean development report[J]. China Power Enterprise Management, 2017(28):49-51.
[20] 朱法华, 许月阳, 孙尊强, 等. 中国燃煤电厂超低排放和节能改造的实践与启示[J]. 中国电力, 2021, 54(4):1-8.
[20] ZHU Fahua, XU Yueyang, SUN Zunqiang, et al. Practice and enlightenment of ultra-low emission and energy-saving retrofit of coal-fired power plants in China[J]. Electric Power, 2021, 54(4):1-8.
[21] MA Z Z, DENG J G, LI Z, et al. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies[J]. Atmospheric Environment, 2016, 131:164-170.
[22] 王霂晗, 朱林, 张晶杰, 等. 欧盟火电厂二氧化碳排放在线监测系统质量保证体系对中国的启示[J]. 中国电力, 2020, 53(3):154-158.
[22] WANG Muhan, ZHU Lin, ZHANG Jingjie, et al. Practice of quality assurance system of carbon dioxide emission on-line monitoring system in the European union[J]. Electric Power, 2020, 53(3):154-158.
[23] 国家发展和改革委员会. 中国发电企业温室气体排放核算方法与报告指南(试行)[EB/OL](2013-11-04)[2021-06-05]. http://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f1101.pdf.
[23] National Development and Reform Commission. Guidelines on accounting methods and reporting of greenhouse gas emissions from China’s power generation enterprises (Trial)[EB/OL](2013-11-04)[2021-06-05]. http://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f1101.pdf.
[24] 李峥辉, 卢伟业, 庞晓坤, 等. 火电企业CO2排放在线监测系统的研发应用[J]. 洁净煤技术, 2020, 26(4):182-189.
[24] LI Zhenghui, LU Weiye, PANG Xiaokun, et al. Research and application of on-line monitoring system for CO2 emissions from thermal power enterprises[J]. Clean Coal Technology, 2020, 26(4):182-189.
[25] 董玉亮, 袁家海, 马丽荣. 面向灵活性发电的燃煤机组大气排放特性分析[J]. 发电技术, 2018, 39(5):425-432.
[25] DONG Yuliang, YUAN Jiahai, MA Lirong. Air emissions characteristics of coal-fired power unit for flexibility generation[J]. Power Generation Technology, 2018, 39(5):425-432.
[26] 刘叶, 吴晟, 周海河, 等. 基于K-means聚类算法优化方法的研究[J]. 信息技术, 2019, 43(1):66-70.
[26] LIU Ye, WU Sheng, ZHOU Haihe, et al. Research on optimization method based on K-means clustering algorithm[J]. Information Technology, 2019, 43(1):66-70.
[27] 陈亮. 节能发电调度全过程优化模型与关键技术研究[D]. 广州: 华南理工大学, 2012.
[27] CHEN Liang. Study on optimization models and key technologies for the whole process of energy-saving generation dispatch[D]. Guangzhou: South China University of Technology, 2012.
[28] 王漪, 柳焯, 柳进. 受基本方程规范的火电机组耗量特性系数辨识[J]. 中国电机工程学报, 2017, 37(4):1151-1160.
[28] WANG Yi, LIU Zhuo, LIU Jin. Fuel consumption characteristic coefficients identification restricted to basic equations for thermal power units[J]. Proceedings of the CSEE, 2017, 37(4):1151-1160.
[29] 张辉, 贾思宁, 范菁菁. 燃气与燃煤电厂主要污染物排放估算分析[J]. 环境工程, 2012, 30(3):59-62.
[29] ZHANG Hui, JIA Sining, FAN Jingjing. The major pollutants estimate analysis of gas and coal power plants[J]. Environmental Engineering, 2012, 30(3):59-62.
[30] 孙友源, 郑张, 秦亚琦, 等. 火电机组碳排放特性研究及管理建议[J]. 中国电力, 2018, 51(3):144-149.
[30] SUN Youyuan, ZHENG Zhang, QIN Yaqi, et al. Study on carbon emission characteristics and suggestions on carbon emission management of coal-fired power plant[J]. Electric Power, 2018, 51(3):144-149.
[31] ONGSAKUL W, PETCHARAKS N. Unit commitment by enhanced adaptive Lagrangian relaxation[J]. IEEE Transactions on Power Systems, 2004, 19(1):620-628.
[32] 郭丹阳, 班明飞, 于继来. 生态GDP核算体系下的差别化燃煤机组安全约束组合模型[J]. 中国电机工程学报, 2019, 39(2):524-535.
[32] GUO Danyang, BAN Mingfei, YU Jilai. Security-constrained unit commitment model for differentiated coal-fired units under ecological GDP accounting system[J]. Proceedings of the CSEE, 2019, 39(2):524-535.
[33] BAN M F, YU J L, SHAHIDEHPOUR M, et al. Considering the differentiating health impacts of fuel emissions in optimal generation scheduling[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1):15-26.
[34] 张晓花, 赵晋泉, 陈星莺. 节能减排多目标机组组合问题的模糊建模及优化[J]. 中国电机工程学报, 2010, 30(22):71-76.
[34] ZHANG Xiaohua, ZHAO Jinquan, CHEN Xingying. Multi-objective unit commitment fuzzy modeling and optimization for energy-saving and emission reduction[J]. Proceedings of the CSEE, 2010, 30(22):71-76.
Outlines

/