Line Hardening and Energy Storage System Configuration Strategies for Resilience Enhancement of a Hybrid AC-DC Distribution System

Expand
  • 1. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Grid Suzhou Power Supply Company, Suzhou 215004, Jiangsu, China

Received date: 2021-06-30

  Online published: 2021-12-30

Abstract

Line hardening and energy storage configuration are important parts of the pre-disaster planning defense strategy, which can effectively improve the disaster prevention and emergency response capabilities of the hybrid AC-DC distribution system (HDS). Under the background of frequent extreme events, a method to improve the resilience of hybrid AC-DC distribution system considering line hardening and energy storage resource allocation is proposed, and a two-stage robust optimization model is constructed. Essentially, the model is a tri-level mixed integer nonlinear programming problem. The outer level evaluates the active behavior of HDS to determine the line hardening and energy storage system configuration strategies, the middle level determines the worst line failure set after the extreme event occurs, which is the passive behavior of HDS, and the inner level evaluates the active behavior of HDS to determine the emergency response and the operation strategies. Based on the nested column and constraint generation algorithm (nested column and constraint generation, NC&CG), the 3-level mixed integer linear programming model is solved. Finally, a simulation analysis is conducted with a 9-node DC distribution network and an improved IEEE-33 node hybrid AC-DC distribution system coupled with a ring AC distribution network as an example. The results show that the proposed method can effectively improve the resilience of the distribution network and ensure its safe and reliable operation in extreme events.

Cite this article

ZHOU Shichao, LIU Xiaolin, XIONG Zhan, WANG Xu, JIANG Chuanwen, ZHANG Shenxi . Line Hardening and Energy Storage System Configuration Strategies for Resilience Enhancement of a Hybrid AC-DC Distribution System[J]. Journal of Shanghai Jiaotong University, 2021 , 55(12) : 1619 -1630 . DOI: 10.16183/j.cnki.jsjtu.2021.279

References

[1] 马鑫, 郭瑞鹏, 王蕾, 等. 基于二阶锥规划的交直流主动配电网日前调度模型[J]. 电力系统自动化, 2018, 42(22):144-150.
[1] MA Xin, GUO Ruipeng, WANG Lei, et al. Day-ahead scheduling model for AC/DC active distribution network based on second-order cone programming[J]. Automation of Electric Power Systems, 2018, 42(22):144-150.
[2] 黄仁乐, 蒲天骄, 刘克文, 等. 城市能源互联网功能体系及应用方案设计[J]. 电力系统自动化, 2015, 39(9):26-33.
[2] HUANG Renle, PU Tianjiao, LIU Kewen, et al. Design of hierarchy and functions of regional energy Internet and its demonstration applications[J]. Automation of Electric Power Systems, 2015, 39(9):26-33.
[3] 赵彪, 赵宇明, 王一振, 等. 基于柔性中压直流配电的能源互联网系统[J]. 中国电机工程学报, 2015, 35(19):4843-4851.
[3] ZHAO Biao, ZHAO Yuming, WANG Yizhen, et al. Energy internet based on flexible medium-voltage DC distribution[J]. Proceedings of the CSEE, 2015, 35(19):4843-4851.
[4] 阮前途, 谢伟, 许寅, 等. 韧性电网的概念与关键特征[J]. 中国电机工程学报, 2020, 40(21):6773-6784.
[4] RUAN Qiantu, XIE Wei, XU Yin, et al. Concept and key features of resilient power grids[J]. Proceedings of the CSEE, 2020, 40(21):6773-6784.
[5] 周晓敏, 葛少云, 李腾, 等. 极端天气条件下的配电网韧性分析方法及提升措施研究[J]. 中国电机工程学报, 2018, 38(2):505-513.
[5] ZHOU Xiaomin, GE Shaoyun, LI Teng, et al. Assessing and boosting resilience of distribution system under extreme weather[J]. Proceedings of the CSEE, 2018, 38(2):505-513.
[6] 童晓阳, 王晓茹. 乌克兰停电事件引起的网络攻击与电网信息安全防范思考[J]. 电力系统自动化, 2016, 40(7):144-148.
[6] TONG Xiaoyang, WANG Xiaoru. Inference and countermeasure presuppostion of network attack in incident on Ukrainian power grid[J]. Automation of Electric Power Systems, 2016, 40(7):144-148.
[7] 和敬涵, 李猛, 罗国敏, 等. 面向韧性提升的异构多源交直流配电网保护与故障恢复方法研究综述[J]. 供用电, 2019, 36(7):2-7.
[7] HE Jinghan, LI Meng, LUO Guomin, et al. Review of protection and restoration methods for heterogeneous multi-source AC/DC distribution network facing resilience improvement[J]. Distribution & Utilization, 2019, 36(7):2-7.
[8] 上海市人民政府. 上海市城市安全发展的工作措施[R]. 上海: 上海市人民政府, 2019.
[8] Shanghai Municipality People’s Government. The working measures of urban safety development in Shanghai[R]. Shanghai: Shanghai Municipality People’s Government, 2019.
[9] TAN Y S, DAS A K, ARABSHAHI P, et al. Distribution systems hardening against natural disasters[J]. IEEE Transactions on Power Systems, 2018, 33(6):6849-6860.
[10] MA S S, CHEN B K, WANG Z Y. Resilience enhancement strategy for distribution systems under extreme weather events[J]. IEEE Transactions on Smart Grid, 2018, 9(2):1442-1451.
[11] KUNTZ P A, CHRISTIE R D, VENKATA S S. Optimal vegetation maintenance scheduling of overhead electric power distribution systems[J]. IEEE Transactions on Power Delivery, 2002, 17(4):1164-1169.
[12] SALMAN A M, LI Y, STEWART M G. Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes[J]. Reliability Engineering & System Safety, 2015, 144:319-333.
[13] NAZEMI M, MOEINI-AGHTAIE M, FOTUHI-FIRUZABAD M, et al. Energy storage planning for enhanced resilience of power distribution networks against earthquakes[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2):795-806.
[14] LIN Y L, BIE Z H. Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding[J]. Applied Energy, 2018, 210:1266-1279.
[15] HE C, DAI C X, WU L, et al. Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters[J]. 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019: 1.
[16] YUAN W, WANG J H, QIU F, et al. Robust optimization-based resilient distribution network planning against natural disasters[J]. IEEE Transactions on Smart Grid, 2016, 7(6):2817-2826.
[17] MA S S, SU L, WANG Z Y, et al. Resilience enhancement of distribution grids against extreme weather events[J]. IEEE Transactions on Power Systems, 2018, 33(5):4842-4853.
[18] SALIMI M, NASR M A, HOSSEINIAN S H, et al. Information gap decision theory-based active distribution system planning for resilience enhancement[J]. IEEE Transactions on Smart Grid, 2020, 11(5):4390-4402.
[19] KIM J, DVORKIN Y. Enhancing distribution system resilience with mobile energy storage and microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(5):4996-5006.
[20] 张海波, 马伸铜, 程鑫, 等. 保证重要负荷不间断供电的配电网储能规划方法[J]. 电网技术, 2021, 45(1):259-268.
[20] ZHANG Haibo, MA Shentong, CHENG Xin, et al. Distribution network energy storage planning ensuring uninterrupted power supply for critical loads[J]. Power System Technology, 2021, 45(1):259-268.
[21] XU B L, WANG Y S, DVORKIN Y, et al. Scalable planning for energy storage in energy and reserve markets[J]. IEEE Transactions on Power Systems, 2017, 32(6):4515-4527.
[22] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9):3238-3246.
[22] YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9):3238-3246.
[23] 刘晓林, 王旭, 蒋传文, 等. 计及VSC运行约束的交直流混合配电网分布式优化调度方法[J]. 电网技术, 2021, 45(3):1089-1101.
[23] LIU Xiaolin, WANG Xu, JIANG Chuanwen, et al. Distributed optimal scheduling of hybrid AC-DC distribution grid considering VSC operation constraints[J]. Power System Technology, 2021, 45(3):1089-1101.
[24] 伍俊, 鲁宗相, 乔颖, 等. 考虑储能动态充放电效率特性的风储电站运行优化[J]. 电力系统自动化, 2018, 42(11):41-47.
[24] WU Jun, LU Zongxiang, QIAO Ying, et al. Optimal operation of wind farm with hybrid storage devices considering efficiency characteristics of dynamic charging and discharging[J]. Automation of Electric Power Systems, 2018, 42(11):41-47.
[25] ZHAO L, ZENG B. An exact algorithm for two-stage robust optimization with mixed integer recourse problems[DB/OL].(2012-09-30) [2021-06-30]. http://www.optimization-online.org/DB_FILE/2012/01/3310.pdf.
Outlines

/