Multi-Objective Optimization for Structural Parameters of Swing-Compliant Hook

Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2020-09-08

  Online published: 2021-12-03

Abstract

To solve the problems of alignment for launch container loading in field-artillery rocket, a novel end-effector, i.e., a swing-compliant hook, is proposed, whose structural parameters are optimized. First, the theoretical model describing the performance of the swing-compliant hook is established based on the node displacement method. The static displacement, static stress, and swing curve of the swing-compliant hook are analyzed by MATLAB, which verifies the rationality of the model. Then, the main structure parameters on the performance of the swing-compliant hook are obtained by using the experimental design method. Additionally, a response surface model characterizing the comprehensive performance of the swing-compliant hook is established. The optimization results show that when the length and the installation height of the compliant mechanism are 90 mm and 23 mm, and the end height of the lifting hook is 110 mm, the swing-compliant hook has an excellent performance in docking, lifting, transferring, and locating.

Cite this article

GE Shicheng, GUO Zhuoyu, LIANG Xi, MO Zonglai, LI Jun . Multi-Objective Optimization for Structural Parameters of Swing-Compliant Hook[J]. Journal of Shanghai Jiaotong University, 2021 , 55(11) : 1467 -1475 . DOI: 10.16183/j.cnki.jsjtu.2020.283

References

[1] 李军, 马大为, 曹听荣, 等. 火箭发射系统设计[M]. 北京: 国防工业出版社, 2008.
[1] LI Jun, MA Dawei, CAO Tinrong, et al. Design of rockets launching system[M]. Beijing: National Defense Industry Press, 2008.
[2] 曾令梦. 储运发箱的高精度自动吊装方法研究[D]. 南京: 南京理工大学, 2018.
[2] ZENG Lingmeng. Research on high-precision automatic hoisting method of launching box[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[3] HAN G D, ZHANG T, CHEN H Q, et al. Sling tray mechanical anti-swing system simulation and modeling of ship-mounted crane[J]. MATEC Web of Conferences, 2017, 104:02016.
[4] 张敏. 啤酒灌装生产线机器人码垛吊具设计与分析[D]. 南京: 南京理工大学, 2015.
[4] ZHANG Min. Design and analysis of robot stacking spreader for beer production line[D]. Nanjing: Nanjing University of Science and Technology, 2015.
[5] 黄海, 张国成, 杨溢. 水下无人航行器机械手系统动力学建模与协调运动轨迹优化[J]. 上海交通大学学报, 2016, 50(9):1437-1443.
[5] HUANG Hai, ZHANG Guocheng, YANG Yi. Dynamic modeling and coordinate motion trajectory optimization for underwater vehicle and manipulator system[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9):1437-1443.
[6] PAN H T, GAO X, HUANG J J, et al. Design and implementation of 3-DOF gripper for maintenances tasks in EAST vacuum vessel[J]. Fusion Engineering and Design, 2018, 127:40-49.
[7] HOWELL L L. Introduction to compliant mechanisms[M]∥ Handbook of compliant mechanisms. Oxford, UK: John Wiley & Sons Ltd., 2013: 1-13.
[8] 杨毅, 鹿碧洲, 李小毛, 等. 一种2自由度柔顺移动并联机构研究及其在对接装置上应用[J]. 机械工程学报, 2019, 55(11):114-122.
[8] YANG Yi, LU Bizhou, LI Xiaomao, et al. Investigation of 2-DOF compliant translational parallel mechanism and applied in the docking device[J]. Journal of Mechanical Engineering, 2019, 55(11):114-122.
[9] 董悫, 张立建, 易旺民, 等. 基于动力学前馈的空间机器人多销孔装配力柔顺控制[J]. 机械工程学报, 2019, 55(4):207-217.
[9] DONG Que, ZHANG Lijian, YI Wangmin, et al. Force compliance control of multi-peg-in-hole assembling by space robot based on dynamic feedforward[J]. Journal of Mechanical Engineering, 2019, 55(4):207-217.
[10] 游嘉伟, 顿向明, 山磊, 等. 运载火箭推进剂加注机器人机构设计[J]. 机电一体化, 2016, 22(4):41-44.
[10] YOU Jiawei, DUN Xiangming, SHAN Lei, et al. Mechanism design of carrier rocket propellant filling robot[J]. Mechatronics, 2016, 22(4):41-44.
[11] 黄剑斌, 黄龙飞, 韩旭, 等. 对卫星柔性对接补加一体化机构建模与设计[J]. 空间控制技术与应用, 2018, 44(5):30-37.
[11] HUANG Jianbin, HUANG Longfei, HAN Xu, et al. Modelling and designing of the flexible docking and fueling mechanism for the satellites[J]. Aerospace Control and Application, 2018, 44(5):30-37.
[12] 韩伟. 柔性锥—杆式对接机构刚柔耦合动力学研究[D]. 长沙: 国防科学技术大学, 2016.
[12] HAN Wei. Research on rigid-flexible coupling dynamics of flexible cone-probe docking mechanism[D]. Changsha: National University of Defense Technology, 2016.
[13] NAN B, BAI Y K, WU Y. Multi-objective optimization of spatially truss structures based on node movement[J]. Applied Sciences, 2020, 10(6):1964.
[14] ZHAO D, GUO H. A trajectory planning method for polishing optical elements based on a non-uniform rational B-spline curve[J]. Applied Sciences, 2018, 8(8):1355.
[15] ZHANG N, SHANG W W, CONG S. Dynamic trajectory planning for a spatial 3-DoF cable-suspended parallel robot[J]. Mechanism and Machine Theory, 2018, 122:177-196.
[16] LI L, XIAO J D, ZOU Y B, et al. Time-optimal path tracking for robots a numerical integration-like approach combined with an iterative learning algorithm[J]. Industrial Robot: The International Journal of Robotics Research and Application, 2019, 46(6):763-778.
[17] ALTUZARRA O, CABALLERO D, CAMPA F J, et al. Position analysis in planar parallel continuum mechanisms[J]. Mechanism and Machine Theory, 2019, 132:13-29.
[18] LIU Q B, SHI W K, CHEN Z Y. Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model[J]. Journal of Applied Polymer Science, 2020, 137(14):48519.
[19] 蒙哥马利 D C. 实验设计与分析[M]. 傅钰生, 等, 第6版. 北京: 人民邮电出版社, 2009.
[19] MONTGOMERY D C. Design and analysis of experiments[M]. FU Yusheng, et al, 6th ed. Beijing: Posts & Telecom Press, 2009.
[20] CHEN Y S. Multiobjective optimization of complex antenna structures using response surface models[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26(1):62-71.
[21] 张春宜, 宋鲁凯, 费成巍, 等. 柔性机构动态可靠性分析的先进极值响应面方法[J]. 机械工程学报, 2017, 53(7):47-54.
[21] ZHANG Chunyi, SONG Lukai, FEI Chengwei, et al. Advanced extremum response surface method for dynamic reliability analysis on flexible mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7):47-54.
Outlines

/