A Hybrid Compression-Absorption High Temperature Heat Pump Cycles for Industrial Waste Heat Recovery

Expand
  • Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-01-16

  Online published: 2021-04-30

Abstract

Aimed at the problem that the conventional absorption heat pumps and compression heat pumps cannot take into account the temperature rise and efficiency, this paper proposes the use of a thermally-coupled hybrid compression-absorption heat pump to achieve high-efficiency and high-temperature output. To meet the demands of different scenarios, a large-temperature-lift cycle and a high-temperature-output cycle are constructed. R245fa and lithium bromide aqueous solution are used as working substance. For output temperature above 100℃, Aspen Plus software is used to establish a mathematical model to predict the cycle performance for calculation. The results show that the optimized coefficient of performance(COP) can be 2.58 or higher when the large-temperature-lift cycle is used to recover the waste heat at 30-40℃. When the high-temperature-output cycle is used to recycle waste heat at 60-70℃, the optimized COP of the cycle can reach 2.83. The cycles proposed are more advantageous than the R245fa compression cycle on temperature lift, output temperature, and efficiency.

Cite this article

AN Meiyan, ZHAO Xinrui, XU Zhenyuan, WANG Ruzhu . A Hybrid Compression-Absorption High Temperature Heat Pump Cycles for Industrial Waste Heat Recovery[J]. Journal of Shanghai Jiaotong University, 2021 , 55(4) : 434 -443 . DOI: 10.16183/j.cnki.jsjtu.2020.023

References

[1] WANG J Y, WANG Z, ZHOU D, et al. Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems[J]. Energy, 2019, 188:116005.
[2] 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17):1856-1857.
[2] HE Yaling. Research on major common basic issues of efficient comprehensive utilization of industrial waste heat[J]. Chinese Science Bulletin, 2016, 61(17):1856-1857.
[3] 王如竹, 王丽伟, 蔡军, 等. 工业余热热泵及余热网络化利用的研究现状与发展趋势[J]. 制冷学报, 2017, 38(2):1-10.
[3] WANG Ruzhu, WANG Liwei, CAI Jun, et al. Research status and trends on industrial heat pump and network utilization of waste heat[J]. Journal of Refrigeration, 2017, 38(2):1-10.
[4] HIGASHI Y, HAYASAKA S, SHIRAI C, et al. Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R 1234ze(Z) and R 245fa[J]. International Journal of Refrigeration, 2015, 52:100-108.
[5] 姚庆. 溴化锂吸收式制冷技术在回收低品位工业余热中的应用[J]. 石油和化工节能, 2005(5):89-93.
[5] YAO Qing. Application of LiBr absorption refrigeration technology in recycling low-grade industrial waste heat[J]. Petroleum & Chemical Energy Conversation, 2005(5):89-93.
[6] ZHOU Q, RADERMACHER R. Development of a vapor compression cycle with a solution circuit and desorber/absorber heat exchange[J]. International Journal of Refrigeration, 1997, 20(2):85-95.
[7] BERTSCH S S, GROLL E A. Two-stage air-source heat pump for residential heating and cooling applications in northern US climates[J]. International Journal of Refrigeration, 2008, 31(7):1282-1292.
[8] 魏茂林, 付林, 赵玺灵, 等. 燃煤烟气余热回收与减排一体化系统应用研究[J]. 工程热物理学报, 2017, 38(6):1157-1165.
[8] WEI Maolin, FU Lin, ZHAO Xiling, et al. Coal-fired boiler flue gas heat recovery system and its performance study[J]. Journal of Engineering Thermophysics, 2017, 38(6):1157-1165.
[9] 叶碧翠, 陈光明, 刘骏, 等. 新型两级开式吸收式热泵系统性能[J]. 化工学报, 2014, 65(Sup.2):248-255.
[9] YE Bicui, CHEN Guangming, LIU Jun, et al. A novel double-stage open absorption heat pump system[J]. CIESC Journal, 2014, 65(Sup.2):248-255.
[10] 刘晓琳. 吸收式热泵在余热回收中的应用研究[D]. 邯郸: 河北工程大学, 2016.
[10] LIU Xiaolin. The applied research on absorption heat pump in waste-heat recovery[D]. Handan, China: Hebei University of Engineering, 2016.
[11] 姜迎春, 韩巍. 利用低温烟气余热的吸收-压缩复合热泵系统[J]. 工程热物理学报, 2017, 38(6):1150-1156.
[11] JIANG Yingchun, HAN Wei. Absorption-compression heat pump system for recovering heat in low-temperature flue gas[J]. Journal of Engineering Thermophysics, 2017, 38(6):1150-1156.
[12] 刘长春, 姜迎春, 韩巍, 等. 集成吸收-压缩复合热泵的微燃机热电联产系统[J]. 科学通报, 2018, 63(16):1606-1614.
[12] LIU Changchun, JIANG Yingchun, HAN Wei, et al. Thermodynamic analysis of a micro turbine CHP system integrated with absorption-compression heat pump[J]. Chinese Science Bulletin, 2018, 63(16):1606-1614.
[13] JENSEN J K, MARKUSSEN W B, REINHOLDT L, et al. Exergoeconomic optimization of an ammonia-water hybrid absorption-compression heat pump for heat supply in a spray-drying facility[J]. International Journal of Energy and Environmental Engineering, 2015, 6(2):195-211.
[14] JENSEN J K, MARKUSSEN W B, REINHOLDT L, et al. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps[J]. International Journal of Refrigeration, 2015, 58:79-89.
[15] SOMERS C, MORTAZAVI A, HWANG Y, et al. Modeling water/lithium bromide absorption chillers in ASPEN Plus[J]. Applied Energy, 2011, 88(11):4197-4205.
[16] BARBOUR E, MIGNARD D, DING Y L, et al. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage[J]. Applied Energy, 2015, 155:804-815.
[17] 王乐民, 陶乐仁, 杨丽辉. 吸气状态对压缩机效率影响的实验研究[J]. 压缩机技术, 2016(3):5-8.
[17] WANG Lemin, TAO Leren, YANG Lihui. Experimental study of the influence of suction conditions on compressor efficiency[J]. Compressor Technology, 2016(3):5-8.
[18] 程博, 高岩, 郭海豹, 等. 增压吸收对土壤源吸收式热泵性能影响的模拟分析[J]. 中国科技论文, 2016, 11(13):1492-1495.
[18] CHENG Bo, GAO Yan, GUO Haibao, et al. Simulation on the performance of ground source absorption heat pump with compression-assisted absorption[J]. China Sciencepaper, 2016, 11(13):1492-1495.
[19] 刘昭云. 蒸汽压缩式中高温热泵系统性能优化研究[D]. 天津: 天津大学, 2012.
[19] LIU Zhaoyun. Performance optimization of vapor compression moderate/high temperature heat pumps[D]. Tianjin: Tianjin University, 2012.
[20] 凌辰, 陈振乾, 施明恒. 太阳能驱动第二类吸收式热泵的模拟研究[J]. 东南大学学报(自然科学版), 2002, 32(1):90-94.
[20] LING Chen, CHEN Zhenqian, SHI Mingheng. Numerical simulation of an absorption heat pump (Type Ⅱ) driven by solar energy[J]. Journal of Southeast University(Natural Science Edition), 2002, 32(1):90-94.
[21] 吴伟, 石文星, 王宝龙, 等. 不同增压方式对空气源吸收式热泵性能影响的模拟分析[J]. 化工学报, 2013, 64(7):2360-2368.
[21] WU Wei, SHI Wenxing, WANG Baolong, et al. Simulation on performance of air source absorption heat pumps with different compression-assisted approaches[J]. CIESC Journal, 2013, 64(7):2360-2368.
[22] GOU X, FU Y, SHAH I A, et al. Research on a household dual heat source heat pump water heater with preheater based on ASPEN PLUS[J]. Energies, 2016, 9(12):1026.
Outlines

/