Innovation and Design

Development of a Hybrid Solar and Wind-Powered Long-Range Unmanned Ocean Stereo Exploration Vessel

Expand
  • a.School of Naval Architecture, Ocean and Civil Engineering
    b.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-10-10

  Online published: 2021-03-03

Abstract

Aimed at the problems of unmanned marine exploration vessels, such as the short voyage time and the limited sensing ability caused by sensor failure under complex marine environments, a long-range unmanned ocean-air stereo exploration vessel driven by wind and solar energy is developed. An elevating ducted wind turbine is designed for high efficiency and low starting wind speed, and a deployable solar photovoltaic power generation system is developed. Therefore, wind power and solar energy can be utilized to realize a hybrid system, which overcomes the instability of single energy power supply, and effectively ensures the endurance of unmanned exploration vessel. Then, a ship-borne tethered ummanned aerial vehicle (UAV) system is developed with an autonomous takeoff and landing control section. Finally, the information fusion technology of ship borne and airborne sensors is adopted to greatly improve the perception ability of the unmanned ship to the surrounding environment and the function of three-dimension detection of sea and air. The unmanned surface vessel (USV) proposed in this paper is permitted to perform the assigned task with different types of loading equipment according to the scenarios.

Cite this article

YAO Tiancheng, ZHAO Yongsheng, WANG Hongyu, HE Yanping, DING Zilong, CHI Zheying, CAI Weikai . Development of a Hybrid Solar and Wind-Powered Long-Range Unmanned Ocean Stereo Exploration Vessel[J]. Journal of Shanghai Jiaotong University, 2021 , 55(2) : 215 -220 . DOI: 10.16183/j.cnki.jsjtu.2020.352

References

[1] 晏洋. 无人船、无人机在太湖水域搜救应急应用[J]. 交通企业管理,2020, 35(4): 89-91.
[1] YAN Yang. Application of unmanned ship and UAV in search and rescue in Lake Taihu[J]. Transportation Enterprise Management, 2020, 35(4): 89-91.
[2] 宋杰,闻佳. 无人船技术在海事的应用[J]. 中国海事,2015(10): 47-50.
[2] SONG Jie, WEN Jia. The application of unmanned vessel technology in maritime domain[J]. China Maritime Safety, 2015(10): 47-50.
[3] 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报,2017, 46(10): 1786-1794.
[3] ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794.
[4] 金久才,张杰,邵峰,等. 一种海洋环境监测无人船系统及其海洋应用[J]. 海岸工程,2015, 34(3): 87-92.
[4] JIN Jiucai, ZHANG Jie, SHAO Feng, et al. An unmanned surface vehicle for ocean environment monitoring and its oceanic application[J]. Coastal Engineering, 2015, 34(3): 87-92.
[5] 蒲进菁,刘涵,江云华,等. 无人船现状及发展趋势综述[J]. 海洋信息,2020, 35(1): 6-11.
[5] PU Jinjing, LIU Han, JIANG Yunhua, et al. Summary of the status and development trends of unmanned surface vehicle[J]. Marine Information, 2020, 35(1): 6-11.
[6] 陈映彬. 无人船发展现状及其关键技术综述[J]. 科学技术创新,2019(2): 60-61.
[6] CHEN Yingbin. The development status and summary of key technologies of unmanned surface vehicle[J]. Scientific and Technological Innovation, 2019(2): 60-61.
[7] 曹娟,王雪松. 国内外无人船发展现状及未来前景[J]. 中国船检,2018(5): 94-97.
[7] CAO Juan, WANG Xuesong. Development status and future prospects of unmanned ships at home and abroad[J]. China Ship Survey, 2018(5): 94-97.
[8] YAN R J, PANG S, SUN H B, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application, 2010, 9(4): 451-457.
[9] 张强,张晓宇,米豪鼎,等. 一种多动力驱动海上综合观测平台: CN111252204A[P]. 2020-06-09[2020-10-18].
[9] ZHANG Qiang, ZHANG Xiaoyu, MI Haoding, et al. Multi-power driving marine comprehensive observation platform: CN111252204A[P]. 2020-06-09[2020-10-18].
[10] 武建国,赵基伟,忻加成,等. 一种风光互补驱动水面无人艇: CN110091976A[P]. 2019-08-06[2020-10-18].
[10] WU Jianguo, ZHAO Jiwei, XIN Jiacheng, et al. Wind-solar complementary driving surface unmanned boat: CN110091976A [P]. 2019-08-06[2020-10-18].
[11] 冬雷,邵立伟. 一种新型风光互补供能无人帆船及其控制方法: CN205738030U[P]. 2016-11-30[2020-10-18].
[11] DONG Lei, SHAO Liwei. Novel wind-solar complementary energy-supply unmanned sailboat and control method: CN205738030U[P]. 2016-11-30[2020-10-18].
[12] 路骏,黄建新,肖寒,等. 系留无人机精准起降设备: CN111516895A[P]. 2020-08-11[2020-10-18].
[12] LU Jun, HUANG Jianxin, XIAO Han, et al. Precise take-off and landing equipment for tethered UAV: CN111516895A[P]. 2020-08-11[2020-10-18].
[13] 钟毅,王文靖,汪俊澎,等. 无人船与无人机协同控制监控方法、装置及系统: CN109991386A[P]. 2019-07-09[2020-10-18].
[13] ZHONG Yi, WANG Wenjing, WANG Junpeng, et al. Cooperative control monitoring method, device and system for unmanned ship and unmanned aerial vehicle: CN109991386A[P]. 2019-07-09[2020-10-18].
[14] 周海峰,张桂玲,许大光,等. 无人船无人机协作系统及控制方法: CN109774960A[P]. 2019-05-21[2020-10-18].
[14] ZHOU Haifeng, ZHANG Guiling, XU Daguang, et al. Unmanned ship drone cooperation system and control method: CN109774960A[P]. 2019-05-21[2020-10-18].
[15] 赵文一. 无人机视觉辅助自主降落系统研究[D]. 哈尔滨: 哈尔滨工业大学,2018.
[15] ZHAO Wenyi. Research on vision-based autonomous landing system of UAV[D]. Harbin: Harbin Institute of Technology, 2018.
[16] 高翔. 基于机载嵌入式平台的无人机视觉辅助自主降落[D]. 哈尔滨: 哈尔滨工业大学,2016.
[16] GAO Xiang. Vision-assisted auto landing of UAV with onboard embedded system[D]. Harbin: Harbin Institute of Technology, 2016.
[17] CHEN Z, HE Y P, ZHAO Y S, et al. High-order redesign method for wind turbine blade optimization in model test considering aerodynamic similarity[J]. Ocean Engineering, 2020, 202: 107156.
Outlines

/