In view of limitations of finite element simulation method of bifurcation buckling in literature, this article presents to introduce stochastic defects in ideal artifacts to transform eigenvalue buckling problems into geometrically nonlinear static deformation problems. The simulation on stability problems of columns and buckling of elastic foundation beam indicates that stochastic defect method can calculate both the first mode and higher modes of buckling. In this article, the first and the second buckling mode by stochastic defect method are presented for stability problems of columns. Furthermore, this article points out limitations of introducing defect by influencing factors in some literature and indicates the applicability of stochastic defect method on nonlinear buckling problems by calculating the buckling of rectangular delamination bridged by fibers. Meanwhile, by contrasting results of different scales defect, this article provides some suggestions to implement this method.
YAN Di, SU Qi, LI Siping
. Stochastic Defect Method for Finite Element Simulation of
Buckling Problems[J]. Journal of Shanghai Jiaotong University, 2019
, 53(1)
: 19
-25
.
DOI: 10.16183/j.cnki.jsjtu.2019.01.003
[1]RANJBARAN A, RANJBARAN M. New finite-element formulation for buckling analysis of cracked structures[J]. Journal of Engineering Mechanics, 2014, 140(5): 0414014.
[2]张劲松, 余音, 汪海. 二维编织复合材料圆柱曲板屈曲性能试验与有限元分析[J]. 复合材料学报, 2015, 32(3): 805-814.
ZHANG Jinsong, YU Yin, WANG Hai. Test and finite element analysis of buckling performance for 2D textile composite cylindrical curved panels[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 805-814.
[3]陈伟, 许希武. 复合材料双曲率壳屈曲和后屈曲的非线性有限元研究[J]. 复合材料学报, 2008, 25(2): 178-187.
CHEN Wei, XU Xiwu. Buckling and postbuckling response analysis of the doubly-curved composite shell by nonlinear FEM[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 178-187.
[4]唐柱才, 马源, 徐新生. 应用有限元程序ANSYS/LS-DYNA进行结构的屈曲模拟[J]. 化工装备技术, 2004, 25(3): 27-31.
TANG Zhucai, MA Yuan, XU Xinsheng. Structure buckling simulation by finite element program ANSYS/LS-DYNA [J]. Chemical Equipment Technology, 2004, 25(3): 27-31.
[5]MANSOURI B, BARADARAN M R, CHEGENI V. The comparison of finite element and finite difference methods in buckling analysis of plate bending[J]. Journal of Environmental Treatment Techniques, 2014, 2(3): 95-98.
[6]申红侠, 赵克祥. Q460高强度钢焊接工字形截面压弯构件局部和整体弯扭相关屈曲有限元分析[J]. 建筑钢结构进展, 2015, 17(4): 1-18.
SHEN Hongxia, ZHAO Kexiang. Finite element analysis on local and overall flexural-torsional interactive buckling of Q460 high strength steel welded I-section beam-columns[J]. Progress in Steel Building Structures, 2015, 17(4): 1-18.
[7]王华琪, 丁洁民, 姚兴华. 防屈曲支撑理论分析与有限元模拟[J]. 沈阳建筑大学学报, 2008, 24(2): 191-195.
WANG Huaqi, DING Jiemin, YAO Xinghua. Theoretical and finite element analysis of buckling-restrained braces[J]. Journal of Shenyang Jianzhu University, 2008, 24(2): 191-195.
[8]石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006: 31-32.
SHI Yiping, ZHOU Yurong. Examples explanation of finite element analysis on ABAQUS[M]. Beijing: China Machine Press, 2006: 31-32.
[9]TULLINI N, TRALLI A, BARALDI D. Buckling of Timoshenko beams in frictionless contact with an elastic half-plane[J]. Journal of Engineering Mechanics, 2013, 139(7): 824-831.
[10]TAHERIBEHROOZ F, AFSHARMANESH B, GHAHERI A. Buckling and vibration of laminated composite circular plate on Winkler-type foundation[J]. Steel and Composite Structures, 2014, 17(1): 1-19.
[11]庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009: 273-274.
ZHUANG Zhuo, YOU Xiaochuan, LIAO Jianhui, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009: 273-274.
[12]张振兴, 肖刚, 李四平. 横向纤维搭桥下的脱层屈曲数值模拟[J]. 上海交通大学学报, 2010, 44(1): 130-133.
ZHANG Zhenxing, XIAO Gang, LI Siping. Simulation of delamination buckling by fiber bridges[J]. Journal of Shanghai Jiao Tong University, 2010, 44(1): 130-133.
[13]COX B N. Delamination and buckling in 3D composites[J]. Journal of Composite Materials, 1994, 28(12): 1114-1126.