In order to predict the maximum horizontal displacement and depth of the inclinometer in the foundation pit, an RS-MIV-ELM model based on rough set attribute reduction, mean impact value and extreme learning machine was proposed. The model was based on systematic analysis and quantification of deformation factors, the attribute reduction algorithm of rough set (RS) and the mean impact value based on the extreme learning machine algorithm (ELM-MIV) were used to remove the redundant factors and small correlation factors respectively. Then, the extreme learning machine (ELM) model was trained by the simplified influence factor set, and the model was used to predict the displacement of other measuring points. Experimental results show that the training speed, prediction accuracy and generalization ability of the proposed model are better than those of the all factors ELM model and the BP neural network model based on the simplest set. The root mean square error or average relative error of RS-MIV-ELM model is about 1/2~2/3 of the two contrast models.
ZHONG Guoqiang,WANG Hao,ZHANG Guohua,QIN Weimin
WANG Chengtang,XIONG Junfeng
. Analysis and Prediction of Factors Affecting Horizontal Displacement of
Foundation Pit Based on RS-MIV-ELM Model[J]. Journal of Shanghai Jiaotong University, 2018
, 52(11)
: 1508
-1515
.
DOI: 10.16183/j.cnki.jsjtu.2018.11.013
[1]华瑞平, 刘新宇, 习剑. 神经网络在深基坑支护变形预测中的应用[J]. 解放军理工大学学报(自然科学版), 2001, 2(5): 67-70.
HUA Ruiping, LIU Xinyu, XI Jian. Application of neural network to forecasting deformation of bracing of deep excavation pit[J]. Journal of PLA University of Science and Technology (Natural Science), 2001, 2(5): 67-70.
[2]曾晖, 胡俊, 鲍俊安. 基于BP人工神经网络的基坑围护结构变形预测方法研究[J].铁道建筑, 2011(1): 70-73.
ZENG Hui, HU Jun, BAO Junan. Research on deformation prediction method of foundation pit re-taining structure based on BP artificial neural network[J]. Railway Engineering, 2011(1): 70-73.
[3]熊孝波, 桂国庆, 郑明新, 等. 基于免疫RBF神经网络的深基坑施工变形预测[J]. 岩土力学, 2008, 28(S1): 598-602.
XIONG Xiaobo, GUI Guoqing, ZHENG Mingxin, et al. Research on deformation prediction for deep foundation pit based on the artificial immune RBF neural network[J]. Rock and Soil Mechanics, 2008, 28(S1): 598-602.
[4]徐洪钟, 滕坤, 李雪红. 基于LS-SVM的基坑变形时间序列预测模型[J]. 水电能源科学, 2011, 29(12): 92-94.
XU Hongzhong, TENG Kun, LI Xuehong. Time series prediction model of deformation of foundation pit based on least squares support vector machines[J]. Water Resources and Power, 2011, 29(12): 92-94.
[5]时红莲, 李大毛, 张涛, 等. 基于时间序列的深基坑支护结构变形预测[J]. 安全与环境工程, 2005, 12(2): 79-82.
SHI Honglian, LI Damao, ZHANG Tao, et al. Deformation forecasting for supporting structure of deep pit based on time series[J]. Safety and Environmental Engineering, 2005, 12(2): 79-82.
[6]胡冬, 张小平. 基于灰色系统理论的基坑变形预测研究[J]. 地下空间与工程学报, 2009, 5(1): 74-78.
HU Dong, ZHANG Xiaoping. Research on predicting deformation of foundation pit based on grey system theory[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(1): 74-78.
[7]贾备, 邬亮. 基于灰色BP神经网络组合模型的基坑变形预测研究[J]. 隧道建设, 2009, 29(3): 280-284.
JIA Bei, WU Liang. Research of the prediction of foundation deformation based on gray BP neural network combined model[J]. Tunnel Construction, 2009, 29(3): 280-284.
[8]PAWLAK Z. Rough sets-theoretical aspects of reasoning about data[M]. Boston, USA: Klumer Academic Publishers, 1991.
[9]王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013: 12-19.
WANG Xiaochuan, SHI Feng, YU Lei, et al. Ana-lysis of 43 cases of MATLAB neural network[M]. Beijing: Beihang University Press, 2013: 12-19.
[10]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feed-forward neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004: 985-990.
[11]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neuro Computing, 2006, 70(1/2/3): 489-501.
[12]李春祥, 迟恩楠, 李正农. 基于极限学习机的脉动风速快速预测方法[J]. 上海交通大学学报, 2016, 50(11): 1719-1723.
LI Chunxiang, CHI Ennan, LI Zhengnong. Fore-casting method for fluctuating wind velocity based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2016, 50(11): 1719-1723.
[13]刘学艺, 李平, 郜传厚. 极限学习机的快速留一交叉验证算法[J]. 上海交通大学学报, 2011, 45(8): 1140-1145.
LIU Xueyi, LI Ping, GAO Chuanhou. Fast leave-one-out cross-validation algorithm for extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2011, 45(8): 1140-1145.
[14]刘菲菲, 彭荻, 贺彦林, 等. 基于极限学习的过程神经网络研究及化工应用[J]. 上海交通大学学报, 2014, 48(7): 977-981.
LIU Feifei, PENG Di, HE Yanlin, et al. Research and chemical application of extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7): 977-981.
[15]DOMBI G W, NANDI J, SAXE P, et al. Prediction of rib fracture injury outcome by an artificial neural network[J]. Journal of Trauma, 1995, 39(5): 915-921.
[16]刘建航, 侯学渊. 基坑工程手册[M]. 2版.北京: 中国建筑工业出版社, 1997: 191-200.
LIU Jianhang, HOU Xueyuan. Excavation engineering manual[M]. 2nd edition. Beijing: China Construction Industry Press, 1997: 191-200.
[17]白永学. 软土地铁车站深基坑变形的影响因素及其控制措施[D]. 成都: 西南交通大学土木工程学院, 2006.
BAI Yongxue. Effect factor and control method on deformation of deep pit of the subway station in soft soil[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University, 2006.
[18]金雪莲, 樊有维, 李春忠, 等. 带撑式基坑支护结构变形影响因素分析[J]. 岩石力学与工程学报, 2007, 26(S1): 3242-3249.
JIN Xuelian, FAN Youwei, LI Chunzhong, et al. Analysis of factors affecting support structure deformation of foundation pit with brace[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3242-3249.