The heuristic algorithm-based initiation method under the probability hypothesis density (PHD) framework is suggested, i.e., the constraints which involve velocity, acceleration and angle of maneuvering targets are adopted in a sliding window, and the most unwanted newborn intensity can be removed. Simulation results show that the proposed method can effectively reduce the intensity quantity of newborn targets, and the computational cost is reduced. Meanwhile, estimation accuracy involved state and target number is enhanced explicitly.
LI Tantan,LEI Ming
. Heuristic Algorithm-Based Initiation Method of Probability Hypothesis Density Filter for Target Tracking[J]. Journal of Shanghai Jiaotong University, 2018
, 52(1)
: 63
-69
.
DOI: 10.16183/j.cnki.jsjtu.2018.01.010
[1]王震, 敬忠良, 雷明, 等. 基于 PHD 的多扩展目标联合检测、跟踪与分类算法[J]. 上海交通大学学报, 2015, 49(11): 1589-1596.
WANG Zhen, JING Zhongliang, LEI Ming, et al. Joint detection, tracking and classification of multiple extended targets using PHD filter[J]. Journal of Shanghai Jiao Tong University, 2015, 49(11): 1589-1596.
[2]VO B N, MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4091-4104.
[3]RISTIC B, CLARK D, VO B N. Improved SMC implementation of the PHD filter[C]∥13th Conference on Information Fusion (FUSION). Edinburg, England: IEEE, 2010: 1-8.
[4]RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.
[5]BEARD M, VO B T, VO B N, et al. Gaussian mixture PHD and CPHD filtering with partially uniform target birth[C]∥15th Conference on Information Fusion (FUSION). Singapore: IEEE, 2012: 535-541.
[6]肖松, 谭贤四, 王红, 等.一种可行的临近空间高超声速目标航迹起始方法[J]. 空军工程大学学报(自然科学版), 2013, 14(1): 11-15.
XIAO Song, TAN Xiansi, WANG Hong, et al. A feasible track initiation method for near space hypersonic target[J]. Journal of Air Force Engineering University (Natural Science Edition), 2013, 14(1): 11-15.
[7]吴静静, 尤丽华, 王瑶, 等. 基于自适应新生目标强度的概率假设密度滤波[J]. 系统仿真学报, 2015, 27(11): 2741-2747.
WU Jingjing, YOU Lihua, WANG Yao, et al. Pro-bability hypothesis density filter based on adaptive target birth intensity[J]. Journal of System Simulation, 2015, 27(11): 2741-2747.