[1]ASENSIO-CUBERO J, GAN J Q, PALANIAPPAN R. Multiresolution analysis over graphs for a motor imagery based online BCI game[J]. Computers in Biology & Medicine, 2016, 68: 21-26.
[2]XU M, QI H, WAN B, et al. A hybrid BCI speller paradigm combining P300 potential and SSVEP blocking feature[J]. Journal of Neural Engineering, 2013, 10(2): 26001-26013.
[3]LOTTE F, FALLER J, GUGER C, et al. Combining BCI with virtual reality: Towards new applications and improved BCI[M]. Berlin: Springer Berlin Heidelberg, 2012: 197-220.
[4]TUMANOV K, GOEBEL R, MCKEL R, et al. fNIRS-based BCI for robot control[C]∥Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul: International Foundation for Autonomous Agents and Multiagent Systems, 2015: 1953-1954.
[5]PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery[J]. Annals of Neurology, 2015, 77(5): 851-865.
[6]BAMDAD M, ZARSHENAS H, AUAIS M A. Application of BCI systems in neurorehabilitation: A scoping review[J]. Disability & Rehabilitation Assistive Technology, 2015, 10(5): 1-10.
[7]GAUME A, ABBASI M A, DREYFUS G, et al. Towards cognitive BCI: Neural correlates of sustained attention in a continuous performance task[C]∥2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier: IEEE, 2015: 1052-1055.
[8]HAJIPOUR S S, SHAMSOLLAHI M B. Selection of efficient features for discrimination of hand movements from MEG using a BCI competition IV data set[J]. Frontiers in Neuroscience, 2012, 6(6): 42.
[9]ZICH C, DEBENER S, KRANCZIOCH C, et al. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery[J]. NeuroImage, 2015, 114: 438-447.
[10]POWER S D, FALK T H, CHAU T. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy[J]. Journal of Neural Engineering, 2010, 7(2): 1393-1402.
[11]NASEER N, HONG K S. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface[C]∥2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 1780-1783.
[12]CHAN A, EARLY C E, SUBEDI S, et al. Systematic analysis of machine learning algorithms on EEG data for brain state intelligence[C]∥Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. Washington: IEEE, 2015: 793-799.
[13]HORTAL E,BEDA A, IEZ E, et al. Online classification of two mental tasks using a SVM-based BCI system[C]∥Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on. San Diego: IEEE, 2013: 1307-1310.
[14]HENNRICH J, HERFF C, HEGER D, et al. Investigating deep learning for fNIRS based BCI[C]∥2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milano: IEEE, 2015: 2844-2847.
[15]CHAE Y, JEONG J, JO S. Toward brain-actuated humanoid robots: Asynchronous direct control using an EEG-based BCI[J]. IEEE Transactions on Robotics, 2012, 28(5): 1131-1144.
[16]MIN H C, LEE J S, HEO J, et al. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI[J]. Journal of Neuroscience Methods, 2016, 258: 104-113.
[17]KHAN M J, HONG K S. Passive BCI based on drowsiness detection: An fNIRS study[J]. Biomedical Optics Express, 2015, 6(10): 4063-4078.
[18]POWER S D, KUSHKI A, CHAU T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: Toward a three-state NIRS-BCI[J]. Bmc Research Notes, 2012, 5(1): 1-10.
[19]AGUILAR J M, CASTILLO J, ELIAS D. EEG signals processing based on fractal dimension features and classified by neural network and support vector machine in motor imagery for a BCI[C]∥VI Latin American Congress on Biomedical Engineering CLAIB 2014. Paraná:Springer International Publishing, 2015: 615-618.
[20]ZIMMERMANN R, MARCHAL-CRESPO L, EDELMANN J, et al. Detection of motor execution using a hybrid fNIRS-biosignal BCI: A feasibility study[J]. Journal of Neuroengineering & Rehabilitation, 2013, 10(1): 1-15.
[21]NASEER N, HONG K S. Classification of functional near-infrared spectroscopy signals corresponding to right-and left-wrist motor imagery for development of a brain-computer interface.[J]. Neuroscience Letters, 2013, 553(8): 84-89.
[22]KAISER V, BAUERNFEIND G, KREILINGER A, et al. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG[J]. Neuroimage, 2014, 85(1): 432-444.
[23]SUZUKI M, MIYAI I, ONO T, et al. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study[J]. Neuroimage, 2008, 39(2): 600-607.
[24]HARADA T, MIYAI I, SUZUKI M, et al. Gait capacity affects cortical activation patterns related to speed control in the elderly[J]. Experimental Brain Research, 2008, 193(3): 445-454.
[25]OBRIG H, HIRTH C, JUNGE-HLSING J G, et al. Cerebral oxygenation changes in response to motor stimulation.[J]. Journal of Applied Physiology, 1996, 81(3): 1174-1183.
[26]TARKKA I M, STOKIC D S. Left prefrontal cortex contributes to motor imagery: A pilot study[J]. Research in Neuroscience, 2013, 2(2): 19-23.
[27]KANTHACK T F D, BIGLIASSI M, ALTIMARI L R. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: A functional near-infrared spectroscopy (fNIRS) study[J]. Motriz Revista De Educao Física, 2013, 19(3): 627-632.
[28]WRIESSNEGGER S C, KURZMANN J, NEUPER C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study[J]. International Journal of Psychophysiology, 2008, 67(1): 54-63.
[29]JANG K E, TAK S, JUNG J, et al. Wavelet minimum description length detrending for near-infrared spectroscopy.[J]. Journal of Biomedical Optics, 2009, 14(3): 659-660.
[30]NISHIYORI R, BISCONTI S, ULRICH B. Motor cortex activity during functional motor skills: An fNIRS study[J]. Brain Topography, 2015, 29(1): 1-14.
[31]KIRILINA E, JELLOW A,HEINE A, et al. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy[J]. NeuroImage, 2012, 61(1): 70-81.
[32]CUI X, BRAY S, REISS A L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics[J]. Neuroimage, 2010, 49(4): 3039-3046.
[33]JIAO X, BAI J, CHEN S, et al. Research on mental fatigue based on entropy changes in space environment[C]∥2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings. Tianjin: IEEE, 2012: 74-77.
[34]BENARON D A, HINTZ S R, VILLRINGER A, et al. Noninvasive functional imaging of human brain using light[J]. Journal of Cerebral Blood Flow & Metabolism Official Journal of the International Society of Cerebral Blood Flow & Metabolism, 2000, 20(3): 469-477.
[35]HONG K S, NASEER N, KIM Y H. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI[J]. Neuroscience Letters, 2014, 587: 87-92.