1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China 2 Department of Physics, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China 3 School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100144, People’s Republic of China
With the diversified development of big data, detection and precision guidance technologies, electromagnetic (EM) functional materials and devices serving multiple spectrums have become a hot topic. Exploring the multispectral response of materials is a challenging and meaningful scientific question. In this study, MXene/TiO2 hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering. More importantly, MXene/TiO2 hybrids exhibit adjustable spectral responses in the GHz, infrared and visible spectrums, and several EM devices are constructed based on this. An antenna array provides excellent EM energy harvesting in multiple microwave bands, with |S11| up to − 63.2 dB, and can be tuned by the degree of bending. An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband. An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14 µm. This work can provide new inspiration for the design and development of multifunctional, multi-spectrum EM devices.
Fig. 1 Fabrication and microstructure models of MXene/TiO<sub>2</sub> hybrids. a Structural evolution process of the MXene/TiO<sub>2</sub> hybrids. b-e Morphology of MT-2, MT-3, MT-4 and MT-5. f EDS mappings of MT-5
Fig. 2 Microstructure characterizations of MXene and MXene/TiO<sub>2</sub> hybrids. TEM image of a, b Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, c MT-2, d MT-3, e MT-4 and f MT-5. g-i HRTEM images of MT-5. j-l Interfaces in MXene/TiO<sub>2</sub> hybrids. m AFM image of MT-5. n-p Enlarged view of region I, II and III in m, respectively. q, r The height distribution along the dashed line in n and p, respectively
Fig. 3 EM response and microwave absorption performance of MXene/TiO<sub>2</sub> hybrids. Complex permittivity of a MT-2, b MT-3, c MT-4 and d MT-5. e-h Cole-Cole plots of MT-3. The inserts are the charge difference density images of MT-3 with -OH, -O, and -F and that with Ti-vacancy defect. i, j Simulation images for E-field between two TiO<sub>2</sub> nanoparticles, as well as between TiO<sub>2</sub> nanoparticle and MXene. RL values of k MT-2, l MT-3, m MT-4 and n MT-5 versus frequency and thickness
Fig. 4 A multifunctional microstrip antenna array constructed by MXene/TiO<sub>2</sub> hybrids. a Structure of the antenna array. b |S<sub>11</sub>| curves versus frequency. c Minimum |S<sub>11</sub>| values at different substrate thicknesses. d The maximum gains of MXene/TiO<sub>2</sub> hybrids antenna arrays. e Schematic diagram of conformal antenna array. f |S<sub>11</sub>| curves at different degrees of bending. g Offset of center frequency and increment of gain (relative to unbending antenna array)
Fig. 5 An UWB bandpass filter constructed by MXene/TiO<sub>2</sub> hybrids. a Application scenarios of UWB bandpass filters. |S<sub>11</sub>| and |S<sub>21</sub>| curves of b MT-5, c MT-4, d MT-3, and e MT-2 bandpass filters. f-i Surface current distributions in passband. j-m Surface current distributions in stopband
Fig. 6 a Infrared and visible-light response characteristics of MXene/TiO<sub>2</sub> hybrids. a Schematic of infrared stealth and visible-light stealth. The power coefficient of b MT-2, c MT-3, d MT-4 and e MT-5 infrared stealth device. f Thermal infrared images. g Temperature increments under heating conditions. h UV-Vis absorption curves of MXene/TiO<sub>2</sub> hybrids. i Enlarged view of the localized area in h. Current density of j MT-2, k MT-3, l MT-4 and m MT-5
1.
Q.Liu, Q.Cao, H.Bi, C.Liang, K.Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486-490 (2016).
2.
C.Wang, Y.Liu, Z.Jia, W.Zhao, G.Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022).
3.
A.Xie, D.Sheng, W.Liu, Y.Chen, S.Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92-100 (2023).
4.
J.Yang, H.Wang, Y.Zhang, H.Zhang, J.Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023).
5.
A.Xie, R.Guo, L.Wu, W.Dong, Anion-substitution interfacial engineering to construct C@MoS2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J. Colloid Interface Sci.651, 1-8 (2023).
6.
X.Zhong, M.K.He, C.Y.Zhang, Y.Q.Guo, J.W.Hu, J.W.Gu, Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024).
7.
A.Xie, Z.Ma, Z.Xiong, W.Li, L.Jiang et al., Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application. J. Mater. Sci. Technol. 175, 125-131 (2024).
8.
H.Sun, R.Che, X.You, Y.Jiang, Z.Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120-8125 (2014).
9.
Y.Guo, F.Yin, Y.Li, G.Shen, J.-C.Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023).
10.
J.-C.Shu, M.-S.Cao, M.Zhang, X.-X.Wang, W.-Q.Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020).
11.
G.-H.Lee, G.S.Lee, J.Byun, J.C.Yang, C.Jang et al., Deep-learning-based deconvolution of mechanical stimuli with Ti3C2Tx MXene electromagnetic shield architecture via dual-mode wireless signal variation mechanism. ACS Nano14, 11962-11972 (2020).
12.
P.Song, B.Liu, C.Liang, K.Ruan, H.Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021).
Y.Li, J.Wu, P.Yang, L.Song, J.Wang et al., Multi-degree-of-freedom robots powered and controlled by microwaves. Adv. Sci.9, 2203305 (2022).
15.
J.Chen, Y.Wang, Y.Liu, Y.Tan, J.Zhang et al., Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon208, 82-91 (2023).
16.
J.Zhao, H.Wang, Y.Li, Z.Wang, C.Fang et al., Construction of self-assembled bilayer core-shell V2O3 microspheres as absorber with superior microwave absorption performance. J. Colloid Interface Sci.639, 68-77 (2023).
F.Pan, Y.Rao, D.Batalu, L.Cai, Y.Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022).
19.
P.He, M.-S.Cao, W.-Q.Cao, J.Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021).
20.
M.Han, Y.Liu, R.Rakhmanov, C.Israel, M. Abu SalehTajin et al., Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33, 2003225 (2021).
21.
Z.Liu, T.He, H.Sun, B.Huang, X. LiLayered, MXene heterostructured with In2O3 nanoparticles for ammonia sensors at room temperature. Sens. Actuat. B Chem. 365, 131918 (2022).
22.
X.S.Li, X.F.Ma, H.K.Zhang, N.Xue, Q.Yao et al., Ambient-stable MXene with superior performance suitable for widespread applications. Chem. Eng. J.455, 140635 (2023).
23.
L.Cai, H.Jiang, F.Pan, H.Liang, Y.Shi et al., Linkage effect induced by hierarchical architecture in magnetic MXene-based microwave absorber. Small20, e2306698 (2024).
24.
C.Peng, X.Yang, Y.Li, H.Yu, H.Wang et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing{001}facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces8, 6051-6060 (2016).
25.
R.B.Rakhi, B.Ahmed, M.N.Hedhili, D.H.Anjum, H.N.Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314-5323 (2015).
26.
X.Li, X.Yin, M.Han, C.Song, H.Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C5, 4068-4074 (2017).
27.
J.-X.Yang, W.-B.Yu, C.-F.Li, W.-D.Dong, L.-Q.Jiang et al., PtO nanodots promoting Ti3C2 MXene in situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chem. Eng. J.420, 129695 (2021).
28.
A.Lipatov, M.Alhabeb, M.R.Lukatskaya, A.Boson, Y.Gogotsi et al., MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1670068 (2016).
29.
M.Zhang, C.Han, W.-Q.Cao, M.-S.Cao, H.-J.Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020).
30.
L.-H.Yao, J.-G.Zhao, Y.-C.Wang, M.-S.Cao, Manipulating electromagnetic response for tunable microwave absorption, electromagnetic interference shielding, and device. Carbon212, 118169 (2023).
31.
L.Chang, Y.-Z.Wang, X.-C.Zhang, L.Li, H.-Z.Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanoparticles on rGO. J. Mater. Sci. Technol. 174, 176-187 (2024).
32.
X.-X.Wang, Q.Zheng, Y.-J.Zheng, M.-S.Cao, Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon206, 124-141 (2023).
33.
M.Qin, L.Zhang, H.Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci.9, e2105553 (2022).
34.
M.He, J.Hu, H.Yan, X.Zhong, Y.Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024).
35.
Y.Zhu, T.Liu, L.Li, M.Cao, Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion. Nano Res.17, 1655-1665 (2024).
36.
C.Wei, L.Shi, M.Li, M.He, M.Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194-203 (2024).
37.
M.Dashti, J. DavidCarey, Graphene microstrip patch ultrawide band antennas for THz communications. Adv. Funct. Mater. 28, 1705925 (2018).
38.
M.Anas, M.M.Mustafa, D.G.Carey, A.Sarmah, J.J.LeMonte et al., Joule heating of carbon pixels for on-demand thermal patterning. Carbon174, 518-523 (2021).
39.
S.G.Kim, T.V.Tran, J.S.Lee, Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J. Ind. Eng. Chem. 112, 423-429 (2022).
40.
M.F.Zhou, B.Liu, C.C.Hu, K.X.Song, Ultra-low permittivity MgF2 ceramics with high Qf values and their role as microstrip patch antenna substrates. Ceram. Int.49, 369-374 (2023).
41.
A.D.Yaghjian, S.R.Best, Impedance, bandwidth, and Q of antennas. IEEE Trans. Anntenas. Propag. 53, 1298-1324 (2005).
42.
A.Lalbakhsh, M.U.Afzal, K.P.Esselle, S.L.Smith, All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations. IEEE Trans. Anntenas. Propag. 70, 2790-2800 (2022).
43.
K.-D.Xu, Y.Liu, Millimeter-wave on-chip bandpass filter using complementary-broadside-coupled structure. IEEE Trans. Circ. Syst. II Express Briefs70, 2829-2833 (2023).
W.Gu, J.Sheng, Q.Huang, G.Wang, J.Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021).
46.
Y.Wu, Y.Zhao, M.Zhou, S.Tan, R.Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022).
47.
H.Yang, J.Zhou, Z.Duan, X.Liu, B.Deng et al., Amorphous TiO2 beats P 25 in visible light photo-catalytic performance due to both total-internal-reflection boosted solar photothermal conversion and negative temperature coefficient of the forbidden bandwidth. Appl. Catal. B Environ. 310, 121299 (2022).
48.
W.Jiao, L.Zhang, R.Yang, J.Ning, L.Xiao et al., Synthesis of monolayer carbon-coated TiO2 as visible-light-responsive photocatalysts. Appl. Mater. Today27, 101498 (2022).