《上海交通大学学报》2023年“新型电力系统与综合能源”专题
以规模化储能为研究对象,在电力市场放开背景下,开展其参与电力现货市场的商业模式研究.首先,从国内外典型市场出清机制出发,分析日前市场及实时市场的出清方式、出清计算等过程,提出适应规模化储能参与现货市场的联合出清机制,包括投标方式、计费方式和出清方式等.其次,为充分发掘规模化储能的市场价值与其他附加价值,增强集群效应并解决储能容量闲置问题,提出适应规模化储能参与现货市场的商业模式,包括独立式(投资主体单一、服务模式单一),联盟式(投资主体多样、服务模式单一),共享式(投资主体多样、服务模式多样),并分析市场交易链中存在的博弈关系,量化电能价值、辅助服务价值以及其他附加价值.在此基础上,基于主从博弈构建不同商业模式下储能参与现货联合市场的双层出清模型范式.上层模型以储能为领导者、以储能收益最大化为目标参与市场竞争,下层模型以调度和交易中心为跟随者、以社会福利最大化为目标进行联合出清;最后,基于改进的IEEE30节点系统,以典型交易场景为例验证所提参与商业模式的有效性和可行性.
电磁探测法是海洋油气资源勘探的主要方法,而海洋电磁发射机是海洋电磁探测系统的关键设备.目前海洋电磁发射机水下拖体长时间工作时,会出现开关器件损坏现象.首先分析了采用单向可控源电路的发射桥换流过程,发现发射偶极寄生电感回馈能量使二级母线产生冲击电压,增大了开关管的电压应力.然后分析了双向可控源电路的工作模式,提出一种双变量解耦控制策略,在变压器前后两级建立的模型基础上,将原来的耦合非线性系统全局线性化为两个单输入单输出系统,以此获得滑模控制器的函数关系.仿真与实验结果表明,所设计的可控源电路可以明显减小母线电容的冲击电压和开关管的电压应力,提高系统的动态性能和效率.
为实现“碳达峰、碳中和”的双碳目标,电-氢互补综合能源系统的推进意义重大,但随着可再生能源的渗透率逐渐提高,系统的惯量水平下降,频率安全受到威胁.针对传统的优化调度方法无法保证系统的频率稳定性这一问题,提出了一种考虑频率稳定约束的电-氢互补多楼宇协调优化调度方法.首先,建立了以楼宇为底层单元的电-氢综合能源系统架构,系统内的可再生能源发电机组采用虚拟同步发电机技术进行控制,以提高系统的惯量水平;其次,以调度周期内系统总运行成本最小为目标,并考虑了并网和孤岛不同运行模式下系统的惯量需求,建立了考虑系统频率稳定约束的优化调度模型;最后,通过算例仿真验证了所提方法对系统频率稳定的有效性、经济性和环保性.
含碳捕集系统的虚拟电厂(VPP)为提升能源效率、实现“双碳”目标提供了一种新路径,同时灵活协调VPP系统内多重不确定性是实现系统低碳运行的关键前提.提出一种在多重不确定性环境下考虑阶梯型碳交易的VPP低碳经济调度模型.对碳捕集系统和需求响应进行建模,并在优化调度模型中引入碳交易机制,构建阶梯型碳交易成本模型,对系统碳排放量进行制约.对VPP内多种不确定因素进行建模,包括风力发电、光伏、负荷、电动汽车,建立考虑机会约束的VPP低碳经济调度模型.运用可调鲁棒优化处理电动汽车的不确定性,并基于序列运算理论,将含机会约束的不确定模型转化为混合整数线性规划模型.采用数字优化技术CPLEX求解,在实际VPP算例中验证了所提模型的有效性.
与传统发电不同,风力发电具有较大的随机性与时空相关性.在风力发电并网的电力系统优化调度问题中,保障电力调度在不同风力发电功率场景中的最优执行是决策问题的关键点,因此高质量的风能场景生成非常重要.基于高斯随机过程和时空协方差函数表征风力发电站输出功率的时空相关性,由Pair Copula模型建立联合概率分布,通过经验概率逆变换方法实现具体场景.评估生成场景的多种指标,验证生成场景的优越性.基于修改的IEEE 6总线系统建立电力系统机组组合的混合整数规划模型,求解不同场景下的问题,验证场景生成方法在风力发电并网调度问题中所具有的经济性和可行性.
综合能源系统运行是当前能源研究领域的热点之一,随着能源领域机制的改革,含有多微能网的综合能源系统给电网运行带来了巨大挑战.针对含有多微能网综合能源系统接入上层配网造成的经济与运行问题,提出一种考虑需求响应的微能网综合能源多时空尺度优化运行策略.从能源角度构建一个多维能源供需平衡模型;进一步建立上、中、下共3层协同优化的多时空尺度运行模型,上层采用日前调度,中层采用日内调度,下层采用实时调度,3个调度阶段分别引入可替代、可转移和可削减负荷进行需求响应优化.算例表明,该策略可以实现多维能源之间的协调互补以及多种能源在不同时间和空间尺度的协调运行,提高了系统运行的经济性.
为了减小微电网运行中可再生能源随机性和波动性造成的预测出力误差,提出考虑碳配额引导需求响应的微电网能量管理策略.构建两层模型预测控制(MPC)的能量管理模型,上层利用长时间尺度模型预测控制构建碳排放配额机制,引导电动汽车参与微电网的需求响应,实现微电网经济运行,降低碳排放量;下层使用MPC滚动优化和反馈校正来实现预测域与控制域之间的耦合,利用短时间尺度模型预测控制平抑可再生能源预测误差造成的功率波动.算例分析结果表明:所提能量管理策略能够有效引导电动汽车或其他可控负荷参与需求响应,实现微电网低碳经济调度和稳定运行.
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果.
采用最优拉丁超立方试验设计法细化涡流发生器参数,确定试验方案,仿真计算风力机的推力和转矩,获得试验数据.基于反向传播(BP)神经网络,构建遗传算法优化BP神经网络的风力机涡流发生器气动性能模型,通过计算气动性能模型预测值与仿真值的误差与均方根,验证气动性能模型的可靠性;耦合鱼群算法和风力机涡流发生器气动性能模型,建立风力机涡流发生器优化方法,对涡流发生器高度、长度和安装角度进行迭代求解,实现涡流发生器优化.结果表明:相比原涡流发生器方案,涡流发生器优化后的风力机叶片截面流动分离得到有效抑制和延迟,表面流体分离现象得到改善,风力机功率提升1.711%,推力下降0.875%.
模块化多电平换流器(MMC)应用于直流配电网等中低压场景时输出电平数较低、谐波含量高,且电容电压易受直流母线电压波动影响而偏离额定值.针对上述问题,提出一种最近电平逼近调制与电容电压稳定控制相结合的MMC改进控制方法.首先,引入阶梯波修正量以提升MMC交流输出电平数;在此基础上,分析阶梯波修正量对电容电压的影响,提出一种基于电容电压反馈的稳定控制方法,实现子模块电压与外部电气环境的解耦控制,从而限制电容电压波动范围,提高设备安全裕度.最后,在MATLAB/Simulink仿真模型和实时数字仿真系统硬件在环测试中验证方法的正确性和有效性.
电动汽车(EV)保有量可观且具有储能的特性,使其参与电力系统运行调控提供备用服务成为可能.针对此建立基于EV用户意愿,以集电商经济收益、微电网功率波动和用户满意度为目标的多目标优化调度模型.考虑到负荷预测误差的影响,对模型进行日前阶段和日内实时修正阶段的多时间尺度优化调度分析.求解方法采用主流的多目标智能优化算法NSGA-III 算法,同时将NSGA-II 和MOEA/D算法作为对比算法,通过对比实验选出最优调度方案并分析EV提供备用容量的场景.仿真结果证明所提模型的有效性.
针对地区发展阶段具有不确定性和不同发展阶段下地区投资需求难以量化的问题,提出一种考虑地区发展阶段不确定性的电网投资决策鲁棒优化方法,以保证电网投资决策与实际发展需求的匹配程度,提高决策结果对投资组合风险与发展阶段不确定性的应对能力.首先,基于现代投资组合理论构建投资风险约束;其次,采用箱型不确定集对地区发展阶段不确定性进行表征,建立考虑发展阶段不确定性的电网投资决策鲁棒优化模型,模型中外层最小化问题求解最恶劣场景下的地区发展阶段不确定性变量,内层最大化问题求解最恶劣场景下能够使投资收益最大的决策方案;再次,根据强对偶理论将双层优化模型转化为可直接求解的单层模型,采用大M法对模型进行求解;最后,利用我国某东部沿海省份中13个地市的实际算例验证了该电网投资决策模型的适用性与有效性.
严重的地震灾害不仅会造成配电网大面积停电,还会损坏交通网,阻碍配电网恢复资源的运输,进而减缓配电网恢复.考虑地震攻击交通网的影响,提出地震灾害下配电网的韧性评估方法及韧性提升策略.首先,基于地震动峰值加速度建立反映地震灾害与交通-配电网故障概率关系的地震攻击模型,量化地震灾害对交通-配电网的影响,并生成交通-配电网故障场景.其次,引入配电网抢修队等待道路修复疏通时间,提出配电网韧性评估指标.再次,构建考虑故障线路抢修、道路修复疏通以及应急资源调度的配电网恢复双层优化模型并求解,上层优化模型以最小失电负荷量为目标,下层优化模型以最短配电网抢修队等待道路修复疏通时间为目标.最后,采用12节点交通网与IEEE33节点配电网耦合算例,验证所提韧性指标的可行性以及恢复方法的有效性.结果表明:考虑地震攻击交通网影响的配电网韧性评估指标更准确,所提的恢复策略能有效提升地震灾害下配电网韧性.
高比例清洁能源具有波动性及间歇性等特点,其大规模接入给电力系统灵活性带来巨大挑战.为提升系统可再生能源消纳能力,考虑火电灵活性改造、投建燃气机组和投建储能的多种灵活性资源,建立一种计及多类型灵活性资源功率特性的电力系统规划方案优选模型.通过改进的IEEE 24节点电力系统和12节点天然气互联系统进行仿真分析,验证所提模型的有效性,并从经济性、消纳能力、低碳性等角度对灵活性规划方案进行优选以满足不同的规划需求.
基于能量函数的无源性控制(PBC)被广泛研究并用于并网变换器以获得更好的控制性能.然而,传统的PBC方法依赖并网变换器的精确数学模型,且已有研究较少考虑数字控制的延迟效应以及电容性电网或复杂弱电网下电网阻抗的不确定性对系统稳定控制的影响.鉴于此,针对三相LCL并网逆变器提出一种改进PBC方法以实现导纳重塑,通过增加电容电流前馈将系统无源区域扩展到奈奎斯特频率,在电网阻抗宽范围变化下实现LCL谐振频率的有源阻尼控制,并提出改进PBC控制参数设计方法.在3 kW并网逆变器样机平台上开展仿真和实验研究,验证了理论分析的正确性.
针对大型风电场跨区输送电能时引起的弱或负阻尼低频振荡问题,提出一种基于李雅普诺夫稳定性理论的快速终端滑模附加阻尼控制策略.研究双馈风力发电机(DFIG)灵活的功率调控特性和快速响应阻尼调节能力,根据DFIG转子外加电压与磁链之间的关系和滑模变结构控制方法设计转子磁链控制器.在系统发生低频振荡时,期望磁链值与实际磁链值产生偏差,附加阻尼控制器输出一个自适应控制信号到转子侧功率控制环节,提高风电场有功出力,抑制系统的低频振荡.在MATLAB/Simulink中建立风电并网系统仿真模型进行离线仿真实验,并搭建基于实时数字仿真系统的大型风电场跨区输电模型进行实时仿真验证.离线仿真和实时仿真结果均表明:当系统发生低频振荡时,应用所提控制方法能够快速调节DFIG发出有功功率,增强系统的阻尼水平,有效抑制系统低频振荡抑制.
针对极端天气会对微电网的稳定运行造成一定影响的问题,提出一种基于模糊场景聚类的微电网优化配置策略.利用历史天气数据,采用模糊场景聚类方法处理源侧天气的随机性导致新能源出力波动的问题;并在负荷侧建立鲁棒优化模型,处理一定范围内的负荷波动.利用一年中8 760 h的场景,区分模糊场景聚类所特有的隶属特征,得到典型场景和极端场景.考虑极端场景对微电网优化配置的影响,建立以综合成本最小的两阶段鲁棒模型,运用列和约束生成算法进行分解,最后用Cplex求解器迭代求解.仿真分析验证了所提优化配置策略的有效性与可行性.
为促进全国范围内资源优化配置,我国积极开展跨省电力交易,并将逐步形成省间-省内两级电力市场运作的模式.在此背景下,提出一种考虑省间-省内两级市场协调运行的日前-日内两阶段经济调度框架.在日前调度阶段,构建省间-省内双层日前经济调度模型;在日内调度阶段,建立考虑源-荷预测偏差的日内经济调度模型.进一步,为应对源-荷预测偏差不确定性对经济调度的影响,提出日前-日内两阶段分布鲁棒优化模型及其求解方法,实现随机场景模糊集表征下日前-日内两阶段经济调度.最后,利用IEEE 39节点和118节点系统构建多送端-多受端互联的测试系统,利用算例仿真验证了所提模型及方法的有效性.
车载逆变器向着小型化、轻量化和高功率密度的趋势发展.针对现有输入电压为DC 110 V 的车载单相逆变器采用Boost电路和全桥逆变两级独立调制而存在效率低、功率密度小等问题,提出了一种Boost电路和全桥逆变两级协同式调制方法.该方法根据输入电压与输出电压绝对值的大小关系使Boost电路和全桥逆变电路处于不同的工作方式,优化绝缘栅双极型晶体管开关状态和二极管通断状态,从而降低逆变器的损耗,提升逆变器效率.同时,该方法能减少全桥逆变电路的输出谐波,从而缩小滤波器件的尺寸,提升逆变器功率密度.设计制作一台2.75 kV·A车载逆变器样机,实验验证了所提方法的正确性和可行性.
调度计划的时间颗粒度指调度计划中每个时段长度.随着气象敏感可再生能源占比的提高,调度时段内电网净负荷的波动性显著增强,造成系统爬坡能力不足、频率异常等风险.因此,不同可再生能源渗透率下时间颗粒度的设置成为当前迫切需要解决的问题.提出基于全局灵敏度的日前调度时间颗粒度优化方法,采用Sobol'方法和多项式混沌展开的全局灵敏度方法量化不同时间颗粒度下净负荷波动性、不确定性对优化调度影响,在精细化程度和负荷预测准确率之间取得一种平衡,选择合适的时间颗粒度使优化调度效果最优.分析和仿真结果表明:时间颗粒度的选择主要由净负荷波动率决定,依据净负荷波动率选择合适时间颗粒度,使得不平衡功率最小化,可达到提升优化调度效果和降低调度成本的目的.
针对热电联产机组存在热电耦合性大、火电机组碳排放量高和负荷侧资源灵活性未充分挖掘等问题,建立计及负荷需求响应和风力发电消纳的电-热系统低碳调度模型.首先,在源侧考虑增加储热和碳捕集设备,同时在负荷侧考虑电价型需求响应和供暖建筑热负荷惯性.然后,以机组运行成本、碳交易成本和弃风惩罚成本总和为目标函数,考虑相关约束,并调用Gurobi求解器进行求解.最后,针对不同案例下系统的经济成本、风力发电消纳量和碳排放速率等方面进行算例对比分析,证明该调度策略在提高系统风力发电消纳能力的同时兼顾经济性和低碳性.
为提高太阳能热水器供暖的稳定性并大幅降低空气源热泵供暖的成本,提出空气源热泵辅助太阳能真空管热水器供暖构想,在甘肃省兰州市七里河区魏岭乡绿化村搭建空气源热泵辅助太阳能热水器供暖试验系统,详细研究了晴天、阴天及多云3种典型工况下系统的集热效率、热泵性能系数、系统太阳能保证率和系统能效比等.研究结果表明,晴天、阴天及多云工况下太阳能集热器有效得热量分别为75.5、4.1和49. 2 kW·h,集热效率分别为61.3%、26.6%、55.2%,太阳能热泵平均性能系数(COP)分别为3.6、3.4、3.6,空气源热泵平均COP分别为0、2.9、3.1,系统实际供热量分别为113.4、125.9和124.8 kW·h,系统耗电量分别为33.4、50.5和42.7 kW·h,系统太阳能保证率分别为66.6%、3.3%、39.4%,系统能效比分别为3.4,2.5,2.9.研究证明了太阳能真空管集热器-空气源热泵系统用于寒冷地区供暖的可行性,为寒冷地区供暖提供了一种新途径.
充分发挥用户侧调节作用可以降低综合能源系统(IES)能源购买成本.需求响应(DR)和电动汽车(EV)作为用户侧的可调度资源,是IES优化调度的重要调节手段.但实际运行过程中,受负荷聚合商(LA)经济激励和EV出行的影响,用户侧DR的不确定性给IES带来的经济影响不容忽略.基于此,提出考虑EV鲁棒随机优化及LA参与的IES优化运行模型,该模型考虑IES从上级网络的购能成本和LA的经济损失成本等.首先构建基于经济激励的响应率模型和EV不确定性模型;然后建立EV鲁棒优化模型,并分析EV出行不确定性的负荷需求.最后利用仿真算例分析用户DR不确定性和EV不确定性对IES运行经济性以及对功率平衡的影响.仿真结果表明:考虑DR和EV的不确定性可优化IES经济运行、减小LA经济损失、降低系统总成本,验证了所提模型的有效性和经济性.
随着分布式发电市场化进程逐步推进,按照用户接入电压等级统一核算过网费的定价方法出现难以准确区分产消者对电网资产利用程度的问题.为此,提出一种适应分布式发电市场化交易的过网费计算方法.从产消者角度分别探讨分布式发电市场点对点(P2P)交易模式和社区(CB)交易模式特征,构建P2P模式和CB模式的电能交易模型.利用基于二阶锥松弛的最优潮流模型,确定配电网潮流分布情况.借助对偶乘子的经济学意义,计算出各节点配网节点电价.考虑对偶乘子的传递性,利用耦合电能交易模型和最优潮流模型分别建立两种交易模式下的过网费计算模型.针对目前CB交易模式过网费分摊方法的局限性,采用夏普利值法将过网费按边际贡献进行公平分摊.利用改进的IEEE15节点、IEEE123节点测试系统验证所提分布式发电市场过网费计算方法的有效性和可行性.
能源是城市碳排放的重要组成,评估城市能源碳达峰是践行国家“双碳”战略的必要手段.为此,针对城市能源的碳排放水平,提出了一种基于Mann-Kendall趋势检验的能源碳达峰评估方法.通过构建涵盖能源碳排放量、清洁能源发电量、交通电能替代量等要素的碳监测体系,结合历史数据计算城市的能源碳排放总量.鉴于能源碳排放具有季节性和随机性,采用Mann-Kendall趋势检验法,建立城市能源碳达峰判断模型,衡量不同时期区域碳排放水平.以上海某行政区为例,从年度、季度视角,判断该区域的能源碳达峰状态.计算结果表明,基于年度数据,该地区在2020年已实现能源碳达峰;基于季度数据,夏季与秋季已实现能源碳达峰,春季和冬季仍处于平台期.该方法可应用于评估城市级的碳达峰状态,为检验各省市的碳达峰进程提供参考.
在双碳目标驱动下,我国电力系统正逐步转型为以新能源为主体的新型电力系统,面临新的供需平衡形势.抽水蓄能作为目前最成熟的储能技术,通过提供不同时间尺度的灵活性资源,能保证电力系统安全经济运行,且有效促进新能源消纳.然而,新形势下抽水蓄能电站的运营决策和成本疏导机制尚未厘清,一定程度上阻碍了其进一步发展.在此背景下,首先综合分析了抽水蓄能电站的技术特点和功能定位;其次从全生命周期的角度建立了抽水蓄能电站的成本模型,并分析成本疏导的路径;再次针对电力市场发展的不同阶段,刻画了价格形成机制以及成本疏导方式的演化路径,为我国抽水蓄能电站的市场化进程提供了可行方案;最后对抽水蓄能电站未来的发展进行了展望.
在气体扩散层(GDL)生产过程中,疏水黏合处理和装配压缩变形导致GDL孔隙结构和渗透特性发生变化.首先基于随机重构算法,建立一种添加黏合物质和施加不均匀压缩的GDL建模方法;然后利用格子玻尔兹曼数值仿真气体单相流动,研究黏合物质与压缩形变对燃料电池GDL孔隙结构和气体渗透特性的影响规律.计算结果表明:黏合物质与压缩形变均会导致气体扩散小尺寸孔隙结构占比增大,整体孔隙率减小;GDL的渗透率变化趋势与孔隙率一致,均降低,变化规律基本符合理论预测关系;当孔隙率相近时,压缩变形是导致的渗透率降低的关键因素.
双馈异步风力发电机(DFIG)作为分布式电源接入配电网,能将辐射状的单电源系统变为双电源系统,改变配电网的拓扑结构.当配电网发生短路故障时,配电网的短路电流会受到风力发电接入的影响.针对DFIG作为分布式电源接入配电网,配电网中不同点发生三相短路故障时短路电流受到风力机接入容量及接入点位置影响的问题,结合DFIG的控制策略进行理论推导和仿真分析.首先,从理论上推导含风力发电的配电网短路故障电流关系式,对风力机提供的短路电流进行分析.然后,引入模型预测控制,与经典的矢量控制进行对比分析得出不同控制策略对短路电流的影响,并在此基础上分析配电网在不同点发生三相短路故障时,短路电流随风力机接入容量及位置的变化情况,分析总结DFIG对配电网短路电流及电流保护的影响.
针对一种自激式谐振无线电能传输(WPT)系统的主功率管驱动能力弱、软开关性能差、开关损耗大等问题,通过分析谐振主电路工作原理,发现问题的根源是两个不可控二极管限制了主功率管驱动电阻值.采用全控型小功率开关管代替二极管提出一种改进型自激谐振电路,通过对电路4种工作模态的理论分析,证实改进型电路主功率管具有较强的驱动能力.为了进一步得到改进型系统的最优参数,综合考虑各参数容限值建立系统非线性规划模型,设计一种混合优化算法,得到系统全局最优解.利用系统仿真及实验样机进行对比验证,结果表明:改进型WPT系统软开关性能优良,开关管温度降低约7 ℃,效率提升约4%.
为解决直流微电网中分布式电源的协同控制问题,提出了一种基于预定时间一致性的微电网控制方法.首先提出一种基于预定时间控制的电流控制方法,能够实现在预先设定的时间内各分布式电源按比例输出功率,同时可以调节各分布式电源出口电压,将其恢复至额定值附近.然后通过MATLAB/Simulink建立微电网仿真系统,在不同工况下验证了所提出控制策略的有效性.最后在仿真系统中建立有限时间控制策略,并与预定时间控制策略下系统电流的电能质量与系统收敛预估时间的保守性进行比较,说明与验证了所提出的控制策略的优点.
5G基站的电费成本已经成为阻碍5G通信技术发展的因素.通过盘活5G基站储能资源,以实现降低5G基站用电成本的目的.首先建立考虑通信负载的5G基站负荷模型和考虑5G基站对储能备用电量需求与配电网供电可靠性的5G基站储能容量可调度模型;提出了一种针对5G储能调度的充放电策略;建立了5G基站储能参与配电网协同优化调度的模型.通过不同方案对5G基站储能优化调度的经济性进行对比.算例分析结果表明,将5G基站闲置储能参与配电网统一优化调度,可在降低5G基站的用电成本的同时,缓解配电网供电压力,提高系统内新能源消纳率,实现通信运营商与电网之间的双赢.
具有一定弹性的建筑热负荷被视为电-热综合能源系统运行优化的重要调节资源.考虑建筑热负荷具有规模大、单体容量小的特点,非侵入式的数据驱动方法成为量化建筑热负荷弹性的有效手段.然而,由于数据不足或模型精度不够,该方法将不可避免地产生误差,给电-热综合能源系统的优化调度带来认知不确定性.因此,提出一种考虑建筑热负荷弹性并兼容相关认知不确定性的电-热综合能源系统优化调度方法.分析基于数据驱动的建筑热负荷需求弹性评估方法,将评估过程中产生的误差建模为认知不确定性,并通过改进的D-S证据理论对多源误差进行融合;采用拉丁超立方抽样方法生成表征热负荷弹性认知不确定性的场景,并通过模糊聚类法进行场景削减;将构造的场景集嵌入电-热综合能源系统的协调优化调度中,实现对建筑热负荷弹性及相关认知不确定性的综合考虑.算例仿真结果表明,考虑建筑热负荷需求弹性及认知不确定性对减少弃风、提高电热综合能源系统的运行灵活性至关重要.
为综合评价大型办公楼宇在能耗、环保、经济性等方面的运行情况,提出基于改进灰色关联逼近理想解排序法(TOPSIS)的多指标综合评价模型.在对楼宇运行实际情况分析的基础上,构建包含楼宇运行能耗、环境因素、经济性的多指标评价体系;引入改进TOPSIS评价方法,利用灰色关联度算法和层次分析法-熵权法确定TOPSIS评估模型距离测度;建立楼宇多属性加权评价模型,全面分析楼宇运行状况.分析8栋电力办公楼宇单元的多指标评价可知:楼宇综合评价结果随时间变化,能耗指标评分起主要作用;与采用其他评价方法的评价结果进行对比,验证了所提楼宇多指标评价模型的有效性.
由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数自回归条件异方差(EGARCH)模型,提出一种考虑异方差性的风场级功率集成概率预测模型.首先使用在线LASSO VAR模型预测风力机的有功功率,再利用自回归条件异方差检验验证残差的异方差性,并利用信息冲击曲线和动态显著线评估正负残差对未来条件方差的不对称影响.然后针对异方差性和不对称性,使用EGARCH模型对单风力机有功功率的残差进行预测,得到有功功率的条件方差.最后,考虑各风力机有功功率的相关性,将风场中各风力机的有功功率求和,得到整个风场总有功功率的概率预测结果.将该方法应用于中国华东某地风场,验证了该模型能有效提高预测精度.
物流中心是物流网络的核心节点,连接地区物流网络及外部交通系统,其运行管理对地区物流效率影响巨大,一直是物流企业管理的核心问题.近年来,随着电子商务和关联快递业务的蓬勃发展,物流企业所承担的交通运输任务持续增长,为物流中心的运行带来极大挑战.为服务国家“双碳”战略,物流中心亟需在确保交通运输效率的前提下控制碳排放强度.在此背景下,以物流中心为研究对象,在交通电气化的发展背景下提出物流中心微电网的概念,并对其运行管理及减排措施进行综述,以期促进物流企业能源利用提质增效,保障其可持续发展.
随着分布式电源(DG)渗透率提高,配电网灵活性不足的问题日益凸显.围绕电能路由器(EER)展开研究,分析其对配电网灵活性的影响.首先,提出配电网转供灵活性指标用以表征配电网灵活性的一个方面;其次,分析EER的线性模型及相关约束条件,构建含有EER模型的主动配电网转供灵活性优化模型;最后,基于94节点交流配电网,设计不同场景,分析对比不同DG运行控制方式和EER参数对配电网转供灵活性的影响,验证EER提高配电网转供灵活性的有效性.
为实现碳达峰碳中和目标,构建以新能源为主体、以能源供给清洁化和能源消费电气化为特征的新型电力系统迫在眉睫.考虑风力发电、光伏发电的间歇性和随机性,以及抽蓄电站、电制氢的储能特性和灵活性特点,基于随机规划理论提出一种风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型.在满足柔性氢负荷总量需求的基础上,以绿电上网电量最大为目标,对风电-光伏-电制氢-抽蓄零碳电力系统进行短期生产模拟,包括日前发电-制氢计划、备用容量、抽水蓄能-放水发电功率、弃风光等.以我国张北风电-光伏-电制氢-抽蓄零碳电力系统示范工程为例,设置多个运行情景对所提模型进行模拟仿真.仿真结果表明:该模型能够有效模拟系统在任意风光出力场景集下的绿电上网计划情况,柔性氢负荷、抽蓄电站能有效促进风光消纳,增加系统综合效益.
三电平双有源混合全桥(H-TLFB)DC-DC变换器通过引入三电平桥臂提高输入电压范围.针对该变换器在传统双重移相控制下具有较大的功率回流、较高的电流应力等问题,提出一种最小回流功率控制策略.首先分析H-TLFB DC-DC变换器功率传输特性,比较变换器在两种不同工作模式下回流功率值的大小,并根据回流功率与电压比、移相比、传输功率的数学关系,计算出回流功率达到最小时对应的最优移相比,并设计相应优化控制策略.与传统双重移相控制策略相比,最小回流功率控制策略下的回流功率可以在全功率传输范围内达到最小值,并且在一定的电压比范围内,回流功率、电流应力可以同时得到优化.最后,通过实验验证设计控制策略的正确性和可行性.
为评估碳中和背景下,售电商随分布式光伏的高水平渗透而面临“死亡螺旋”运营窘境的可能性,分析可能导致“死亡螺旋”的关键影响因素,采用系统动力学方法进行建模分析.首先建立销售电价等市场条件引导下的用户侧分布式光伏渗透模型,其次根据分布式光伏渗透水平与售电商盈余之间的负反馈关系,建立售电商盈余模型.算例分析从中长期视角评估了分布式光伏发电量、批发电价等因素对售电商盈余的灵敏度影响.结果表明:售电商盈余在中长期时间内呈缓慢下降趋势,若输配电量、批发电价、运维成本等多重影响因素同时发生较大变化,所形成的极端场景可能引起售电商运营的“死亡螺旋”.
可再生能源在新型电力系统中的占比进一步加大,光伏机组并网容量有明显提升的趋势,而不同渗透率下的光伏发电系统动态行为对电网负荷特性产生显著影响,但光伏发电并网动态模型复杂、待辨识参数多,增大了模型实际运用难度.为此,基于光伏电站机理模型,建立光伏发电并网系统的动态离散等值模型,得到光伏发电并网系统的动态离散等值模型的模型参数;并采用IEEE 14节点系统研究不同渗透率下光伏发电并网系统的动态离散等值模型特性.仿真结果表明,光伏发电并网系统的动态离散等值模型能准确描述光伏发电系统的动态特性,且精度高、易于辨识.