海底采矿车行进水阻力特性及减阻外壳设计优化

展开
  • 1. 上海交通大学 海洋工程全国重点实验室,上海 200240;

    2. 上海交通大学 海洋装备研究院,上海 200240;

    3. 上海交通大学三亚崖州湾深海科技研究院,海南 三亚 572024;

    4.江苏科技大学 海洋学院,江苏 镇江 212000;

    5.江苏省船舶与海洋工程装备技术创新中心,江苏 南通 226100

赵泽鑫(1999—),硕士生,从事深海采矿装备水动力特性研究
赵国成,助理研究员,电话(Tel.):021-34207184;E-mail: guocheng.zhao@sjtu.edu.cn

网络出版日期: 2025-10-07

基金资助

国家自然科学基金资助项目(52301332),上海市“科技创新行动计划”扬帆专项(23YF1419800),海南省科技专项资助项目(ZDYF2024KJTPY014),三亚市科技创新专项(2022KJCX67)

Hydrodynamic Resistance Characteristics and Drag-Reducing Shell Design Optimization of Seabed Mining Vehicle

Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 

    2. Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China; 

    3. SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572024, Hainan, China; 

    4. Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China; 

    5. Jiangsu Marine Technology Innovation Center, Nantong 226100, Jiangsu, China

Online published: 2025-10-07

摘要

海底采矿车作为深海采矿系统的核心装备,其水阻力特性的优劣将直接影响海底集矿作业的经济效益。然而,现有采矿车的外形多为长方体,其尾涡紊乱度高,行进水阻力大。为此,本文针对采矿车行进水阻力特性及减阻方法开展研究,提出了通过设计类椭球形浮力材料外壳优化采矿车整体外形,进而降低车体行进水阻力的方法。基于实验验证的可实现k-ɛ湍流模型,计算并分析有、无外壳下车体阻力特性及周围流场特征的差异,研究壳首系数和壳尾系数对车体平均阻力系数的影响规律。结果表明:是影响的主导参数,增大可减小尾涡尺寸及强度,继而增大车尾压力,从而降低;外壳首部的整体压力对的变化不敏感,因而对的影响不显著。在特定的浮力材料总体积下,当=1.7、=2.1时,车体的行进水阻力最小,此时外壳减阻率为68.19%。研究结果可为海底采矿车外形结构的设计优化提供理论支撑。

本文引用格式

赵泽鑫1, 赵国成1, 2, 3, 肖龙飞1, 2, 3, 徐立新4, 5 . 海底采矿车行进水阻力特性及减阻外壳设计优化[J]. 上海交通大学学报, 0 : 1 . DOI: 10.16183/j.cnki.jsjtu.2025.128

Abstract

As a core component of deep-sea mining systems, the hydrodynamic resistance characteristics of seabed mining vehicle directly determine the economic efficiency of subsea mining operations. Current mining vehicle configurations predominantly adopt cuboidal geometries, exhibiting high turbulence intensity in wake vortices and substantial hydrodynamic resistance during motion. To address this limitation, this study investigates hydrodynamic resistance characteristics during motion and drag reduction methodologies for mining vehicle, proposing an optimization approach through semi-ellipsoidal shell-shaped buoyancy module design to refine overall vehicle morphology, thereby achieving significant hydrodynamic resistance mitigation. Utilizing an experimentally validated realizable k-epsilon turbulence model, analysing hydrodynamic resistance characteristics and flow field distributions with and without shell, examining the influence of head coefficientLE and rear coefficientLW on the mean drag coefficientCd. Key findings revealLW as the dominant parameter controllingCd. IncreasingLWreduces wake vortex dimensions and intensity while augmenting rear pressure, thereby decreasingCd. In contrast, global pressure at the shell head demonstrates negligible sensitivity toLE's variation, renderingLE's influence onCd statistically marginal. Under constant buoyancy material volume, minimal hydrodynamic resistance is achieved atLE=1.7 andLW=2.1, yielding a drag reduction ratio of 68.19%. These results can provide theoretical foundations for the design optimization of the shape structure of seabed mining vehicle.
文章导航

/