基于端到端神经网络的高精度复值多频电容层析成像方法

展开
  • 1. 上海电力大学 电气工程学院,上海 200090

    2. 国网江西省电力有限公司 萍乡供电分公司,江西 萍乡 337000;

    3. 电子科技大学(深圳)高等研究院,广东 深圳 518110

杨晨(2000—),硕士生,从事电磁层析成像、电磁无损检测及成像传感器设计研究.

卢武,副教授;E-mailwuluee@shiep.edu.cn.

网络出版日期: 2025-05-28

基金资助

国家自然科学基金资助项目(51707113),上海市教育发展基金会和上海市教育委员会“晨光计划”(21CGA63)

Highly Accurate Complex-Valued Multi-Frequency Capacitance Tomography Based on End-to-End Neural Network

Expand
  • 1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 

    2. Ping Xiang Power Supply Branch, State Grid Jiangxi Electric Power Co., Ltd., Ping Xiang 337000, Jiangxi, China; 

    3. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China

Online published: 2025-05-28

摘要

为满足新型电力系统对能源协同输送走廊建设中介质分布的高精度监测需求,提出一种基于端到端神经网络的复值多频电容层析成像(complex-valued multi-frequency electrical capacitance tomography, CVMF-ECT)图像重建方法。首先,构建了一种新的背景预测网络,用于预测介质的背景分布,为初步成像提供先验约束。其次,利用图像重建强化网络对初步重建图像进行像素级分类,使每个像素对应一种介质类型,准确反映了管道中的介质分布及其特征,实现了高精度的图像重建。最后,采用结构相似度对成像质量进行量化评估,并与典型算法对比验证。仿真结果表明,经神经网络优化后的重建图像与目标图像间结构相似度均高于0.85,且在噪声干扰和频率变化的影响下仍能输出高精度的介质分布图像。该方法为高电导率下介质分布的高精度成像提供了一个新的技术思路。

本文引用格式

杨晨1, 史庆莲1, 刘文博2, 杨华1, 熊一飞1, 张茂懋3, 卢武1 . 基于端到端神经网络的高精度复值多频电容层析成像方法[J]. 上海交通大学学报, 0 : 1 . DOI: 10.16183/j.cnki.jsjtu.2025.057

Abstract

In order to meet the demand for high-precision monitoring of medium distribution in the construction of collaborative energy transmission corridors for new power systems, a complex-valued multi-frequency electrical capacitance tomography (CVMF-ECT) based on an end-to-end neural network is proposed as an image reconstruction method. First, a new background prediction network is constructed for predicting the background distribution of the medium to provide priori constraints for preliminary imaging. Second, an image reconstruction enhancement network is used to classify the preliminary reconstructed images at the pixel level, so that each pixel corresponds to a media type, accurately reflecting the media distribution and its characteristics in the pipeline, and realizing high-precision image reconstruction. Finally, the structural similarity is used to quantitatively assess the imaging quality, and compared with typical algorithms for verification. The simulation results show that the structural similarity between the reconstructed image enhanced by neural network and the target image are all higher than 0.85, and the high-precision media distribution image can still be output under the influence of noise interference and frequency change. This method provides a new technical idea for high-precision imaging of medium distribution under high conductivity.
文章导航

/