制导、导航与控制

折叠翼垂直起降飞行器多体动力学建模和控制

  • 吕海龙 ,
  • 刘燕斌 ,
  • 陈柏屹 ,
  • 何真 ,
  • 贾军
展开
  • 1.南京航空航天大学 航天学院,南京 211106
    2.南京航空航天大学 自动化学院,南京 211106
    3.上海机电工程研究所,上海 201109
吕海龙(2000—),硕士生,从事变体无人机垂直起降研究.
陈柏屹,副研究员;E-mail:chenboyi1989@nuaa.edu.cn.

收稿日期: 2024-06-06

  修回日期: 2024-06-26

  录用日期: 2024-07-01

  网络出版日期: 2024-07-25

基金资助

国家自然基金青年基金(62103187);南京航空航天大学研究生科研与实践创新计划资助(xcxjh20231509)

Multibody Dynamics Modeling and Control of Folding Wing Vertical Takeoff and Landing Aircraft

  • Lü Hailong ,
  • LIU Yanbin ,
  • CHEN Boyi ,
  • HE Zhen ,
  • JIA Jun
Expand
  • 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    3. Shanghai Institute of Mechanical and Electrical Engineering, Shanghai 201109, China

Received date: 2024-06-06

  Revised date: 2024-06-26

  Accepted date: 2024-07-01

  Online published: 2024-07-25

摘要

针对旋翼飞行器续航能力有限及固定翼飞行器飞行场地受限的问题,提出一种可垂直起降的多单元翼串联式总体布局方案.首先,根据多体串联运动学和升力线理论,分析集中式变形的气动特性,并确定变形过程中的飞行攻角限制.然后,采用拟拉格朗日方程建立完整描述各单元翼间相对运动特性的非线性多体动力学模型,并对比固定翼与折叠翼在爬升过程中的飞行效率,验证了折叠翼的长续航能力以及良好的操纵性.最后,对定直平飞状态下折叠翼姿态与结构耦合特性进行模态分析,据此设计折展和飞行协同控制律,实现倾转折叠过程中的稳定控制.

本文引用格式

吕海龙 , 刘燕斌 , 陈柏屹 , 何真 , 贾军 . 折叠翼垂直起降飞行器多体动力学建模和控制[J]. 上海交通大学学报, 2024 , 58(11) : 1772 -1782 . DOI: 10.16183/j.cnki.jsjtu.2024.207

Abstract

To address the limited endurance of rotorcraft and the restricted flight areas of fixed-wing aircraft, a vertically take-off and landing multi-unit wings tandem configuration is proposed. First, using multi-body kinematics and the lifting-line theory, the aerodynamic characteristics of the centralized deformation are analyzed, and limits of the flight angle of attack during the deformation process are determined. Then, a nonlinear multi-body dynamics model is established using the quasi-Lagrangian equation to comprehensively describe the relative motion characteristics between the unit wings. The flight efficiency of fixed wings and folding wings during the climb process is compared, which verifies the long endurance and good maneuverability of the folding wings. Finally, a modal analysis of the attitude and structural coupling characteristics of the folding wings in steady-level flight is conducted, based on which the cooperative control law of folding and flight is designed to achieve stable control in the process of tilting and folding.

参考文献

[1] REHAN M, AKRAM F, SHAHZAD A, et al. Vertical take-off and landing hybrid unmanned aerial vehicles: An overview[J]. The Aeronautical Journal, 2022, 126(1306): 2017-2057.
[2] 韦振鹏, 刘峰, 杨森. 垂直起降固定翼无人机发展现状与技术要点[J]. 飞机设计, 2024, 44(1): 5-13.
  WEI Zhenpeng, LIU Feng, YANG Sen. Development and key technologies of vertical take-off and landing UAV with fixed wing[J]. Aircraft Design, 2024, 44(1): 5-13.
[3] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246.
[4] MISRA A, JAYACHANDRAN S, KENCHE S, et al. A review on vertical take-off and landing (VTOL) tilt-rotor and tilt wing unmanned aerial vehicles (UAVs)[J]. Journal of Engineering, 2022, 2022: 1803638.
[5] 吴林峰, 李春文. 尾座式垂直起降无人机在时变侧风干扰下的轨迹跟踪控制[J]. 清华大学学报(自然科学版), 2022, 62(1): 179-188.
  WU Linfeng, LI Chunwen. Position tracking control for a tailsitter VTOL UAV experiencing time-varying crosswind disturbances[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(1): 179-188.
[6] 程宇轩, 周洲, 王科雷. 分布式推进垂直起降固定翼的过渡走廊边界研究[J]. 西北工业大学学报, 2022, 40(6): 1195-1203.
  CHENG Yuxuan, ZHOU Zhou, WANG Kelei. Research on transition corridor boundary of distributed propulsion VTOL fixed wing[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1195-1203.
[7] 吴瑷菁. 垂起倾转旋翼无人机过渡模式控制系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2020.
  WU Aijing. Control system design on transition stage of tilt rotor UAV[D]. Harbin:Harbin Institute of Technology, 2020.
[8] 王鹏, 陈浩岚, 鲍存余, 等. 变形飞行器建模及控制方法研究综述[J]. 宇航学报, 2022, 43(7): 853-865.
  WANG Peng, CHEN Haolan, BAO Cunyu, et al. Review on modeling and control methods of morphing vehicle[J]. Journal of Astronautics, 2022, 43(7): 853-865.
[9] ZHU E T, ZHOU Z, LI H D. Modal analysis and flight validation of compound multi-body aircraft[J]. Aerospace, 2023, 10(5): 442.
[10] 刘东旭, 谢长川, 洪冠新. 翼尖铰接复合飞行器动力学特性研究[J]. 北京航空航天大学学报, 2021, 47(11): 2311-2321.
  LIU Dongxu, XIE Changchuan, HONG Guanxin. Dynamic characteristics of wingtip-jointed composite aircraft[J]. Journal of Beijing University of Aeronautics & Astronautics, 2021, 47(11): 2311-2321.
[11] 马仲航, 张执南. 多旋翼无人机遥操机械臂多功能仿真实验平台的设计与实现[J]. 上海交通大学学报, 2020, 54(6): 636-642.
  MA Zhonghang, ZHANG Zhinan. Design and realization of a versatile simulation platform for telecontrol multi-rotor unmanned aerial vehicle with a robotic arm[J]. Journal of Shanghai Jiao Tong University, 2020, 54(6): 636-642.
[12] NIU C, YAN X T, CHEN B Y. Control-oriented modeling of a high-aspect-ratio flying wing with coupled flight dynamics[J]. Chinese Journal of Aeronautics, 2023, 36(4): 409-422.
[13] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 2018, 6: 42294-42308.
[14] GAO L, ZHU Y H, ZANG X Z, et al. Dynamic analysis and experiment of multiple variable sweep wings on a tandem-wing MAV[J]. Drones, 2023, 7(9): 552.
[15] 邹旭, 刘贞报, 赵闻, 等. 尾座式垂直起降无人机过渡轨迹优化方法研究[J/OL]. 北京航空航天大学学报, https://doi.org/10.13700/j.bh.1001-5965.2023.0458.
  ZOU Xu, LIU Zhen-bao, ZHAO Wen, et al. Optimization method of transition trajectory for tail-sitter unmanned aerial vehicles[J/OL]. Journal of Beijing University of Aeronautics & Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2023.0458.
[16] DAUD FILHO A C, BELO E M. A tilt-wing VTOL UAV configuration: Flight dynamics modelling and transition control simulation[J]. The Aeronautical Journal, 2024, 128(1319): 152-177.
[17] PEDRO S, TOMáS D, LOBO DO VALE J, et al. Design and performance quantification of VTOL systems for a canard aircraft[J]. The Aeronautical Journal, 2021, 125(1292): 1768-1791.
[18] 程子欢, 裴海龙. 涵道尾座式垂直起降飞行器全包线飞行控制[J]. 控制理论与应用, 2021, 38(11): 1863-1873.
  CHENG Zihuan, PEI Hailong. A full envelope flight controller for ducted fan tail sitter vertical take-off and landing[J]. Control Theory & Applications, 2021, 38(11): 1863-1873.
[19] DENG X F, HUANG Y Q, XU B Z, et al. Position and attitude tracking finite-time adaptive control for a VTOL aircraft using global fast terminal sliding mode control[J]. Mathematics, 2023, 11(12): 27-32.
[20] 夏济宇, 周洲, 王正平, 等. 基于NLESO的倾转动力无人机垂直起降模态轨迹跟踪控制[J]. 西北工业大学学报, 2023, 41(1): 1-10.
  XIA Jiyu, ZHOU Zhou, WANG Zhengping, et al. Trajectory tracking control of tilt-propulsion UAV vertical take-off and landing mode based on NLESO[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 1-10.
[21] 曹煜琪, 付皓然, 高飞, 等. 基于MPCC的鸭翼尾座式垂直起降无人机轨迹跟踪控制算法[J]. 航空学报, 2023, 44 (Sup.2): 501-511.
  CAO Yuqi, FU Haoran, GAO Fei, et al. Trajectory tracking control algorithm for canard-equipped tail-sitting vertical takeoff and landing UAV based on MPCC[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (Sup.2): 501-511.
[22] WEI Q L, YANG Z S, SU H Z, et al. Online adaptive dynamic programming for optimal self-learning control of VTOL aircraft systems with disturbances[J]. IEEE Transactions on Automation Science & Engineering, 2024, 21(1): 343-352.
[23] MEIROVITCH L, STEMPLE T. Hybrid equations of motion for flexible multibody systems using quasicoordinates[J]. Journal of Guidance, Control, & Dynamics, 1995, 18(4): 678-688.
[24] 蒋国江. 扑翼变形飞行器的动力学建模与飞行仿真[D]. 长沙: 国防科学技术大学, 2015.
  JIANG Guojiang. Dynamic modeling and flight simulation of flapping wing aerocraft[D]. Changsha: National University of Defense Technology, 2015.
[25] 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256.
  AN Chao, XIE Changchuan, MENG Yang, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256.
[26] 杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262.
  DU Wanshan, ZHOU Zhou, BAI Yu, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii, 2023, 44(8): 2245-2262.
[27] MENG Y, AN C, XIE C C, et al. Conceptual design and flight test of two wingtip-docked multi-body aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(12): 144-155.
[28] 刘志豪, 闵荣, 方成, 等. 多飞行模式垂直起降无人机过渡飞行控制策略[J]. 上海交通大学学报, 2019, 53(10): 1173-1181.
  LIU Zhihao, MIN Rong, FANG Cheng, et al. Transition flight control strategy of multiple flight mode vertical take-off and landing unmanned aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1173-1181.
文章导航

/