新型电力系统与综合能源

计及动态碳排放因子的多H2-IES双层优化运行方法

展开
  • 1.上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
    2.国网上海综合能源服务有限公司,上海 200023
付文溪(1998-),硕士生,从事综合能源系统优化运行研究.
王玲玲,博士,助理研究员;E-mail:himalayart@163.com.

收稿日期: 2022-06-17

  修回日期: 2022-08-16

  录用日期: 2022-09-15

  网络出版日期: 2024-06-17

基金资助

上海市科技计划资助项目(21DZ1208400)

Bi-Level Optimization Operation Method of Multi-H2-IES Considering Dynamic Carbon Emission Factors

Expand
  • 1. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Grid Shanghai Integrated Energy Service Co., Ltd., Shanghai 200023, China

Received date: 2022-06-17

  Revised date: 2022-08-16

  Accepted date: 2022-09-15

  Online published: 2024-06-17

摘要

在“双碳”目标背景下,能源系统的低碳转型是其未来的发展方向.近年来,高热值、低污染的氢能受到广泛重视.基于碳排放流理论提出一种计及动态碳排放因子的多含氢综合能源系统(H2-IES)双层优化运行模型.在上层模型中,上级能源网基于效益最优原则建立经济调度模型,确定各园区的能源价格与碳排放因子并下发给下层;在下层模型中,基于纳什谈判理论建立了多园区低碳合作运行模型,并采用自适应交替方向乘子法分布式求解,确定各园区的能源需求量并反馈给上层;所提模型在多次迭代互动中实现上下层协同优化.为了实现对多园区合作收益的合理分配,提出一种基于综合议价能力的收益分配方法.算例分析表明,该双层优化方法可实现上下层间的协同运行,同时兼顾多园区运行的低碳性与经济性,通过合理分配合作收益,保证园区参与合作的积极性.

本文引用格式

付文溪, 窦真兰, 张春雁, 王玲玲, 蒋传文, 熊展 . 计及动态碳排放因子的多H2-IES双层优化运行方法[J]. 上海交通大学学报, 2024 , 58(5) : 610 -623 . DOI: 10.16183/j.cnki.jsjtu.2022.225

Abstract

In the context of achieving “carbon peaking and carbon neutrality”, the low-carbon transformation of the energy system is the development direction in the future. Hydrogen, known for its high calorific value and low pollution, has received extensive attention in recent years. Based on the carbon emission flow theory, a bi-level optimization operation model of multi-integrated energy system with hydrogen (H2-IES) is proposed considering dynamic carbon emission factors. At the upper level, an economic dispatch model is established by the main energy grid based on the principle of optimal benefit, and the energy prices and carbon emission factors of each park are determined and distributed to the lower level. At the lower level, a multi-park low-carbon cooperative operation model is established based on the Nash negotiation theory, and the adaptive alternating direction method of multipliers (A-ADMM) is used for distributed solution to determine the energy demand of each park and provide feedback to the upper level. The coordinated operation of both levels is realized in multiple iterative interactions. To equitably distribute the benefits of cooperation, a revenue distribution method based on comprehensive bargaining power is proposed. The analysis of a case study shows that the bi-level optimization method proposed in this paper can realize the coordinated operation between the upper and lower levels, and take into account the low-carbon and economical properties of multi-parks operation. Because the income is reasonably distributed, the enthusiasm of parks to participate in cooperation can be guaranteed.

参考文献

[1] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
  ZHANG Shenxi, WANG Danyang, CHENG Hao-zhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207.
[2] 崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022, 42(23): 8431-8445.
  CUI Yang, GU Chunchi, FU Xiaobiao, et al. Low-carbon economic dispatch of comprehensive energy system of carbon capture power plant considering generalized electrothermal demand response[J]. Proceedings of the CSEE, 2022, 42(23): 8431-8445.
[3] 国家发展和改革委员会,国家能源局. 氢能产业发展中长期规划(2021—2035 年)[EB/OL]. (2022-03-23)[2022-08-03]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123.
  National Development and Reform Commission, National Energy Administration. Medium and long-term plan for the development of hydrogen industry (2021—2035)[EB/OL]. (2022-03-23)[2022-08-03]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123.
[4] HOU H, CHEN Y, LIU P, et al. Multisource energy storage system optimal dispatch among electricity hydrogen and heat networks from the energy storage operator prospect[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2825-2835.
[5] ZHANG Y Y, YU Y. Carbon value assessment of hydrogen energy connected to the power grid[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2803-2811.
[6] 郭梦婕. 综合需求响应模式下含电制氢装置的能源系统优化运行研究[D]. 上海: 上海交通大学, 2020.
  GUO Mengjie. Study on optimal operation of energy system of hydrogen production plant with electricity under comprehensive demand response mode[D]. Shanghai: Shanghai Jiao Tong University, 2020.
[7] 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46(5): 1692-1702.
  DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46(5): 1692-1702.
[8] 李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
  LI Tiange, HU Zhijian, CHEN Zhi, et al. Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric Power Automation Equipment, 2023, 43(1): 16-24.
[9] 帅轩越, 王秀丽, 王志成, 等. 计及风电消纳下基于纳什议价理论的多综合能源系统协同运行[J]. 西安交通大学学报, 2022, 56(3): 187-196.
  SHUAI Xuanyue, WANG Xiuli, WANG Zhicheng, et al. Cooperative operation for multiple integrated energy systems considering wind power consumption by Nash bargaining convention[J]. Journal of Xi’an Jiaotong University, 2022, 56(3): 187-196.
[10] 胡鹏, 艾欣, 杨昭, 等. 考虑电能共享的综合能源楼宇群日前协同优化调度[J]. 电力自动化设备, 2019, 39(8): 239-245.
  HU Peng, AI Xin, YANG Zhao, et al. Day-ahead optimal scheduling for cluster building with integrated energy system considering power sharing[J]. Electric Power Automation Equipment, 2019, 39(8): 239-245.
[11] 崔明勇, 宣名阳, 卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42(10): 3548-3563.
  CUI Mingyong, XUAN Mingyang, LU Zhigang, et al. Operation optimization strategy of multi-integrated energy service providers based on cooperative game[J]. Proceedings of the CSEE, 2022, 42(10): 3548-3563.
[12] 王琦, 李宁, 顾欣, 等. 考虑碳减排的综合能源服务商合作运行优化策略[J]. 电力系统自动化, 2022, 46(7): 131-140.
  WANG Qi, LI Ning, GU Xin, et al. Optimization strategy for cooperative operation of integrated energy service providers considering carbon emission reduction[J]. Automation of Electric Power Systems, 2022, 46(7): 131-140.
[13] 范宏, 于伟南, 柳璐, 等. 双碳目标下考虑电氢互补的智慧园区多楼宇协调调度[J]. 电力系统自动化, 2022, 46(21): 42-51.
  FAN Hong, YU Weinan, LIU Lu, et al. Multi-building coordinated dispatch in smart park for carbon emission peak and carbon neutrality considering electricity and hydrogen complementary[J]. Automation of Electric Power Systems, 2022, 46(21): 42-51.
[14] LI L X, ZHANG S, CAO X L, et al. Assessing economic and environmental performance of multi-energy sharing communities considering different carbon emission responsibilities under carbon tax policy[J]. Journal of Cleaner Production, 2021, 328: 129466.
[15] 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49(10): 1-11.
  CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49(10): 1-11.
[16] WEI X, ZHANG X, SUN Y X, et al. Carbon emission flow oriented tri-level planning of integrated electricity-hydrogen-gas system with hydrogen vehicles[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2607-2618.
[17] 刘哲远, 邢海军, 程浩忠, 等. 考虑碳排放流及需求响应的综合能源系统双层优化调度[J]. 高电压技术, 2023, 49(1): 169-178.
  LIU Zheyuan, XING Haijun, CHENG Haozhong, et al. Bi-level optimal scheduling of comprehensive energy system considering carbon emission flow and demand response[J]. High Voltage Engineering, 2023, 49(1): 169-178.
[18] CHENG Y H, ZHANG N, ZHANG B S, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1307-1318.
[19] 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2841.
  LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2841.
[20] 刘诗剑. 能源转型背景下新能源制氢市场推广的关键问题研究[D]. 北京: 华北电力大学(北京), 2021.
  LIU Shijian. Research on key issues of market promotion of hydrogen production from new energy under the background of energy transformation[D]. Beijing: North China Electric Power University, 2021.
[21] 瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38(3): 697-707.
  QU Kaiping, HUANG Linni, YU Tao, et al. Decentralized scheduling of multi-regional comprehensive energy system under carbon trading mechanism[J]. Proceedings of the CSEE, 2018, 38(3): 697-707.
[22] 黄海涛, 陈曦, 查俊吉. 多园区综合能源系统分区自治式能量合作社区及联合优化调度[J]. 电网技术, 2022, 46(8): 2955-2963.
  HUANG Haitao, CHEN Xi, ZHA Junji. Multi-park comprehensive energy system partition autonomous energy cooperative community and joint optimal dispatching[J]. Power System Technology, 2022, 46(8): 2955-2963.
[23] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
  XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41(9): 31-38.
[24] 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38(18): 5490-5499.
  ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38(18): 5490-5499.
[25] 白宏坤, 尹硕, 李虎军, 等. 计及碳交易成本的多能源站综合能源系统规划[J]. 电力科学与技术学报, 2019, 34(1): 11-19.
  BAI Hongkun, YIN Shuo, LI Hujun, et al. Optimal planning of multi-energy stations considering Carbon-trading cost[J]. Journal of Electric Power Science and Technology, 2019, 34(1): 11-19.
[26] 王瑞, 程杉, 刘烨, 等. 基于综合需求响应和奖惩阶梯碳交易的能源枢纽主从博弈优化调度[J]. 电力系统保护与控制, 2022, 50(8): 75-85.
  WANG Rui, CHENG Shan, LIU Ye, et al. Master-slave game optimal scheduling of energy hub based on integrated demand response and a reward and punishment ladder carbon trading mechanism[J]. Power System Protection and Control, 2022, 50(8): 75-85.
[27] 马腾飞, 裴玮, 肖浩, 等. 基于纳什谈判理论的风-光-氢多主体能源系统合作运行方法[J]. 中国电机工程学报, 2021, 41(1): 25-39.
  MA Tengfei, PEI Wei, XIAO Hao, et al. Cooperative operation method of wind-light-hydrogen multi-agent energy system based on Nash negotiation theory[J]. Proceedings of the CSEE, 2021, 41(1): 25-39.
[28] ZHENG L T, WANG J X, YU Y, et al. On the consistency of renewable-to-hydrogen pricing[J]. CSEE Journal of Power and Energy Systems, 2022, 8(2): 392-402.
[29] 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2721.
  WU Jinling, LOU Ping, GUAN Minyuan, et al. Optimal operation strategy of multi-microgrid power sharing based on asymmetric Nash negotiation[J]. Power System Technology, 2022, 46(7): 2711-2721.
[30] 赵波, 倪筹帷, 李志浩, 等. 基于自适应步长ADMM的电-气混联系统多时间尺度优化调度[J]. 电力自动化设备, 2019, 39(8): 294-299.
  ZHAO Bo, NI Chouwei, LI Zhihao, et al. Multi-time scale optimal scheduling of electricity-gas hybrid system based on adaptive step size ADMM[J]. Electric Power Automation Equipment, 2019, 39(8): 294-299.
[31] 林咨良. 基于交替方向乘子法的综合能源系统配置与运行优化研究[D]. 济南: 山东大学, 2021.
  LIN Ziliang. Research on configuration and operation optimization of comprehensive energy system based on alternating direction multiplier method[D]. Jinan: Shandong University, 2021.
[32] 杨海柱, 代庚辉, 张鹏. 基于ADMM-RGS算法的综合能源系统多主体协同优化运行策略研究[J]. 电力系统及其自动化学报, 2022, 34(6): 25-33.
  YANG Haizhu, DAI Genghui, ZHANG Peng. Research on multi-agent collaborative optimization operation strategy for integrated energy system based on ADMM-RGS algorithm[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 25-33.
[33] 尹晨旭, 朱刘柱, 项超, 等. 考虑氢能交互转换的综合能源微网协调调度方法[J]. 中国电力, 2020, 53(10): 88-95.
  YIN Chenxu, ZHU Liuzhu, XIANG Chao, et al. Coordinated dispatch method for integrated microgrid energy system considering interactive hydrogen conversion[J]. Electric Power, 2020, 53(10): 88-95.
[34] 周雪婷. 基于Weymouth方程分段线性化的气-电互联综合能源系统优化调度研究[D]. 南京: 南京师范大学, 2020.
  ZHOU Xueting. Research on optimal scheduling of gas-electricity interconnected comprehensive energy system based on piecewise linearization of Weymouth equation[D]. Nanjing: Nanjing Normal University, 2020.
[35] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
  CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
文章导航

/