光泵磁力仪中垂直腔面发射激光器激光波长锁定
收稿日期: 2022-09-23
修回日期: 2022-12-11
录用日期: 2022-12-21
网络出版日期: 2024-04-30
基金资助
上海航天先进技术联合研究基金(USCAST2019-23);上海交通大学“深蓝计划”基金项目(SL2021ZD202)
Wavelength Locking of Vertical-Cavity Surface-Emitting Laser in Optically Pumped Magnetometer
Received date: 2022-09-23
Revised date: 2022-12-11
Accepted date: 2022-12-21
Online published: 2024-04-30
针对光泵磁力仪(OPM)对小型化、低功耗以及激光光源波长稳定性的要求,提出一套垂直腔面发射激光器激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以 133Cs 原子D1线Fg = 4→Fe = 3超精细能级跃迁波长为参考波长,OPM的原子蒸汽气室同时作为波长锁定的工作气室,无需任何额外装置即可将激光波长锁定在该D1线跃迁波长.使用数字比例积分微分控制与模糊控制算法进行激光的温度控制,使温度波动在 ±0.005 ℃ 内;采用基于电流镜的激光电流驱动方案,使电流波动在±50 nA内,为激光波长锁定提供了良好的硬件基础.最后,在实验室环境下实现OPM长达2 h的稳定信号输出.
骆曼箬, 李绍良, 黄艺明, 张弛, 吴招才, 刘华 . 光泵磁力仪中垂直腔面发射激光器激光波长锁定[J]. 上海交通大学学报, 2024 , 58(4) : 438 -448 . DOI: 10.16183/j.cnki.jsjtu.2022.371
Aimed at the requirements of optically pumped magnetometer (OPM) for miniaturization, low power consumption and laser frequency stability, a wavelength locking control scheme for vertical-cavity surface-emitting laser is proposed. The proposed method of laser wavelength locking based on Doppler absorption optical feedback takes the wavelength of D1 line Fg = 4→Fe = 3 transition in 133Cs atom as the reference. The atom vapor cell in OPM is also used as the working cell for wavelength locking so that the laser wavelength can be locked on the corresponding wavelength of the D1 line transition without any additional setup. The digital proportional integral differential and fuzzy control algorithm is used for laser temperature control and the temperature fluctuation is within ±0.005 ℃. Laser current driving is realized based on current mirror and the current fluctuation is within ±50 nA, which provides a good hardware foundation for laser wavelength locking. Finally, a stable signal output of the OPM for up to two hours under laboratory conditions is realized.
[1] | GUO Y H, WAN S G, SUN X G, et al. Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation[J]. Applied Optics, 2019, 58(4): 734-738. |
[2] | JIA Y C, LIU Z C, CHAI Z, et al. The optimization and stabilization of pump light frequency in the minimized atomic magnetometer[J]. IEEE Transactions on Instrumentation & Measurement, 2021, 70: 1-9. |
[3] | ZHANG K, LUO Z H, TANG F, et al. Experimental optimization of atomic magnetometer in nuclear magnetic resonance gyroscope[J]. Japanese Journal of Applied Physics, 2020, 59(3): 030907. |
[4] | XING B Z, SUN C, LIU Z A, et al. Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer[J]. Optics Express, 2021, 29(4): 5055-5067. |
[5] | WANG Z, PENG X, ZHANG R, et al. Single-species atomic comagnetometer based on Rb87 atoms[J]. Physical Review Letters, 2020, 124(19): 193002. |
[6] | YAN Y G, LIU G, LIN H X, et al. VCSEL frequency stabilization for optically pumped magnetometers[J]. Chinese Optics Letters, 2021, 19(12): 121407. |
[7] | YAO Y J, ZOU C W, YU H Y, et al. The developing condition analysis of semiconductor laser frequency stabilization technology[J]. Journal of Semiconductors, 2018, 39(11): 114004. |
[8] | 庄铭今, 范晓婷, 王天顺, 等. 原子陀螺仪用激光稳频技术进展与趋势分析[J]. 激光杂志, 2021, 42(6): 1-6. |
ZHUANG Mingjin, FAN Xiaoting, WANG Tianshun, et al. Progress and trend analysis of laser frequency stabilization technology for atomic gyroscopes[J]. Laser Journal, 2021, 42(6): 1-6. | |
[9] | XIE J C, WANG J Q, WANG Z B, et al. Infrared laser locking to a rubidium saturated absorption spectrum via a photonic chip frequency doubler[J]. Optics Letters, 2019, 44(5): 1150-1153. |
[10] | TALKER E, ARORA P, ZEKTZER R, et al. Demonstration of dichroic atomic vapor laser lock in micro fabricated vapor cell using light induced atomic desorption[C]// Conference on Lasers and Electro-Optics. San Jose, Washington, D. C., USA: OSA, 2019. |
[11] | SHANG H S, ZHANG T Y, MIAO J X, et al. Laser with 10-13 short-term instability for compact optically pumped cesium beam atomic clock[J]. Optics Express, 2020, 28(5): 6868-6880. |
[12] | XU Z Y, PENG X X, LI L H, et al. Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers[J]. Laser Physics, 2020, 30(2): 025701. |
[13] | 董海峰, 郭军, 张海洋, 等. 用于铯原子磁力仪的双AOM激光稳频系统[J]. 仪器仪表学报, 2020, 41(10): 129-135. |
DONG Haifeng, GUO Jun, ZHANG Haiyang, et al. Double AOM laser frequency stabilization system for cesium atomic magnetometer[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 129-135. | |
[14] | 戴维涵, 代彦军, 张鹏, 等. 半导体制冷元件特性参数测量及选用[J]. 上海交通大学学报, 2004, 38(10): 1669-1672. |
DAI Weihan, DAI Yanjun, ZHANG Peng, et al. Measurement for the characteristic parameters and selection of thermoelectric cooling modules[J]. Journal of Shanghai Jiao Tong University, 2004, 38(10): 1669-1672. | |
[15] | 李欣怡, 李秀飞, 全伟. 基于F-P腔的激光频率稳定传递方法[J]. 北京航空航天大学学报, 2019, 45(4): 841-846. |
LI Xinyi, LI Xiufei, QUAN Wei. Laser frequency stabilization transmission method based on an F-P cavity[J]. Journal of Beijing University of Aeronautics & Astronautics, 2019, 45(4): 841-846. | |
[16] | 陈大勇, 廉吉庆, 翟浩. CPT原子钟VCSEL波长锁定环路的设计与实现[J]. 原子能科学技术, 2017, 51(6): 1140-1144. |
CHEN Dayong, LIAN Jiqing, ZHAI Hao. Design and realization of VCSEL wavelength locked loop of CPT atomic clock[J]. Atomic Energy Science & Technology, 2017, 51(6): 1140-1144. | |
[17] | 程前, 邓华秋. 半导体激光器驱动电路及温控系统设计[J]. 电子器件, 2019, 42(5): 1185-1189. |
CHENG Qian, DENG Huaqiu. Design of Driving circuit and temperature control system for semiconductor laser[J]. Chinese Journal of Electron Devices, 2019, 42(5): 1185-1189. | |
[18] | 缪存孝, 邢国柱, 刘建丰, 等. 高精度激光器电流驱动与交流温控系统设计[J]. 红外与激光工程, 2019, 48(9): 0905004. |
MIAO Cunxiao, XING Guozhu, LIU Jianfeng, et al. Design of current drive and alternating current temperature control system for high-precision laser[J]. Infrared & Laser Engineering, 2019, 48(9): 0905004. | |
[19] | 吴栋. 可调谐窄线宽半导体激光器驱动设计[D]. 深圳: 深圳大学, 2017. |
WU Dong. Driving design of tunable narrow linewidth semiconductor laser driver[D]. Shenzhen: Shenzhen University, 2017. | |
[20] | 范兴龙, 王彪, 许玥, 等. 用于CO2气体检测的 VCSEL 激光器温控系统设计[J]. 激光杂志, 2018, 39(11): 18-21. |
FAN Xinglong, WANG Biao, XU Yue, et al. Design of temperature controller for VCSEL laser used in CO2 gas detection[J]. Laser Journal, 2018, 39(11): 18-21. | |
[21] | 田亚玲, 李创社, 张朝阳. 高稳定度半导体激光器电源[J]. 应用激光, 2020, 40(4): 740-744. |
TIAN Yaling, LI Chuangshe, ZHANG Chaoyang. High-stability power for semiconductor lasers[J]. Applied Laser, 2020, 40(4): 740-744. | |
[22] | 胡慧琴, 李少远. 模糊控制系统的解析结构与鲁棒性分析[J]. 上海交通大学学报, 2005, 39(12): 2029-2033. |
HU Huiqin, LI Shaoyuan. An analytical study on structure and robustness of fuzzy control systems[J]. Journal of Shanghai Jiao Tong University, 2005, 39(12): 2029-2033. | |
[23] | 张科. 基于热原子系综的精密测量[D]. 绵阳: 中国工程物理研究院, 2019. |
ZHANG Ke. Precision measurement based on the thermal atomic ensemble[D]. Mianyang: China Academy of Engineering Physics, 2019. | |
[24] | 张开放. 面向原子光学器件的VCSEL激光器驱动电路设计及激光稳频[D]. 太原: 中北大学, 2020. |
ZHANG Kaifang. Design of VCSEL laser drive circuit for atomic optical devices and laser frequency stabilization[D]. Taiyuan: North University of China, 2020. | |
[25] | 李雪. 垂直腔面发射激光器的模式调控与器件研制[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. |
LI Xue. Investigations on mode modulation and device fabrication of vertical cavity surface emitting lasers[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022. | |
[26] | SHAH V. Method for stabilizing atomic devices: US 20180219353[P]. 2018-08-02 [2022-09-15]. |
[27] | LU F F, HOU X K, WANG X, et al. Analyzing and measuring the diode laser’s linewidth affected by the driving current’s white noise[J]. Josa B, 2022, 39(9): 2450-2456. |
[28] | 韩宇晶, 严祥安, 邓琳星, 等. 铷原子超精细谱线的强度差异机理研究[J]. 西北师范大学学报(自然科学版), 2021, 57(2): 41-47. |
HAN Yujing, YAN Xiang’an, DENG Linxing, et al. Study on intensity difference mechanism of rubidium atom hyperfine spectra[J]. Journal of Northwest Normal University (Natural Science), 2021, 57(2): 41-47. |
/
〈 |
|
〉 |