船舶海洋与建筑工程

基于人工神经网络的极地船舶冰阻力预报方法

展开
  • 1.江苏科技大学 船舶与海洋工程学院,江苏 镇江 212100
    2.上海交通大学 船舶海洋与建筑工程学院,上海 200240
孙乾洋 (1995-),博士生,主要从事冰载荷方面的研究.

收稿日期: 2022-08-19

  修回日期: 2023-02-17

  录用日期: 2023-02-20

  网络出版日期: 2024-03-04

基金资助

国家重点研发计划(2022YFE0107000);国家自然科学基金面上项目(52171259);工信部高技术船舶科研项目(工信部重装函[2021]342号)

An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships

Expand
  • 1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
    2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-08-19

  Revised date: 2023-02-17

  Accepted date: 2023-02-20

  Online published: 2024-03-04

摘要

极地船舶冰区航行时,冰阻力的准确预报在保障船舶航行安全方面起着重要作用.近年来,机器学习在船舶方面的应用越来越广泛,其中,人工神经网络(ANN)是机器学习领域中一种常用的方法.本文的重点是设计一个用于预报极地船舶冰阻力的ANN模型.参考传统的经验和半经验公式,选择合适的输入特征参数,通过大量的船舶模型试验数据来训练神经网络,搭建径向基(RBF)神经网络模型,并选用遗传算法(GA)进行模型优化.研究表明,基于7个特征参数输入的遗传算法优化径向基(RBF-GA)神经网络模型具有良好的泛化效果,与模型试验和实船试验数据对比,平均误差在8%左右,具有较高的精度,可作为冰阻力预报工具.

本文引用格式

孙乾洋, 周利, 丁仕风, 刘仁伟, 丁一 . 基于人工神经网络的极地船舶冰阻力预报方法[J]. 上海交通大学学报, 2024 , 58(2) : 156 -165 . DOI: 10.16183/j.cnki.jsjtu.2022.316

Abstract

Accurate prediction of ice resistance plays an important role in ensuring the safety of ship sailing in polar navigation in ice areas. In recent years, machine learning has been widely used in the field of ships, among which artificial neural network (ANN) is a common method. The focus of this paper is to design an ANN model for predicting the ice resistance of polar ships. According to the traditional empirical and semi-empirical formula, appropriate input characteristic parameters are selected. The radial basis function (RBF) neural network model is built based on a large number of ship model test data, and the genetic algorithm (GA) is used to optimize the model. The research shows that the radial basis function neural network model optimized by genetic algorithm (RBF-GA) based on seven characteristic parameters input has good generalization effect. Compared with the model test and full-scale test data, the average error is about 8%, which shows that the RBF-GA model has a high accuracy, and can be used as a tool for ice resistance prediction.

参考文献

[1] ZHOU L, SU B, RISKA K, et al. Numerical simulation of moored structure station keeping in level ice[J]. Cold Regions Science and Technology, 2012, 71: 54-66.
[2] HU J, ZHOU L. Further study on level ice resistance and channel resistance for an icebreaking vessel[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8: 169-176.
[3] MARKOPOULOS A P, GEORGIOPOULOS S, MANOLAKOS D E. On the use of back propagation and radial basis function neural networks in surface roughness prediction[J]. Journal of Industrial Engineering International, 2016, 12: 389-400.
[4] KOUSHAN K. Empirical prediction of ship resistance and wetted surface area using artificial neural networks[J]. Practical Design of Ships & Other Floating Structures, 2001, 1: 501-507.
[5] COUSER P, MASON A, MASON G, et al. Artificial neural networks for hull resistance prediction[C]// 3rd International Conference on Computer and IT Applications in the Maritime Industries. Siguenza, Spain:Compit, 2004: 391-402.
[6] CUI H, TURAN O, SAYER P. Learning-based ship design optimization approach[J]. Computer-Aided Design, 2012, 44: 186-195.
[7] YANG Y, TU H, SONG L, et al. Research on accurate prediction of the container ship resistance by RBFNN and other machine learning algorithms[J]. Journal of Marine Science and Engineering, 2021, 9(4): 376-393.
[8] 陈爱国, 叶家玮. 基于神经网络的船舶阻力计算数值实验研究[J]. 中国造船, 2010, 51(2): 21-27.
  CHEN Aiguo, YE Jiawei. Numerical experimental study of ship resistance calculation based on neural network[J]. Shipbuilding of China, 2010, 51(2): 21-27.
[9] 张乔宇, 黄国富, 金建海. 基于机器学习的船舶阻力预报模型研究[J]. 舰船科学技术, 2019, 41(23): 6-10.
  ZHANG Qiaoyu, HUANG Guofu, JIN Jianhai. Research on ship resistance prediction model based on machine learning[J]. Ship Science and Technology, 2019, 41(23): 6-10.
[10] KIM J H, KIM Y, LU W. Prediction of ice resistance for ice-going ships in level ice using artificial neural network technique[J]. Ocean Engineering, 2020, 9(6): 613-623.
[11] ISLAM M. Machine learning techniques for ship performance predictions in open water and ice[C]// The 31st International Ocean and Polar Engineering Conference. Rhodes, Greece: OnePetro, 2021: ISOPE-I-21-1296.
[12] ZHANG M, SUN Q, GARME K, et al. Analysis of inland waterway ship performance in ice: Operation Time Window[J]. Ocean Engineering, 2022, 263: 112409.
[13] BROOMHEAD D, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988, 2: 321-355.
[14] GAN M, PENG H, DONG X P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction[J]. Applied Mathematical Modelling, 2012, 36: 2911-2919.
[15] LEWIS J W, EDWARDS R Y. Methods for predicting icebreaking and ice resistance characteristics of icebreakers[J]. SNAME Transactions, 1970, 78: 213-249.
[16] VANCE G. Analysis of the performance of a 140-foot great lakes icebreaker:USCGC Katmai Bay. Report No.80-8[R]. Hanover, USA: U.S. ACRREL, 1980.
[17] ZAHN P, PHILLIPS L. Towed resistance trials in ice of the USCGC Mobile Bay (WTGB103)[M]. Montreal, Canada: Transportation Development Centre, 1987.
[18] LINDQVIST G. A straightforward method for calculation of ice resistance of ships[C]// Proceedings of 10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea, Sweden: POAC, 1989: 722-735.
[19] RISKA K, WILHELMSON M, ENGLUND K, et al. Performance of merchant vessels in ice in the Baltic. Research Report No. 52[R]. Helsinki, Finland: Winter Navigation Research Board, 1998.
[20] IONOV B. Ice resistance and its composition[R]. Moscow, Russia: Arctic and Antarctic Research Institute, 1988.
[21] KEINONEN A, BROWNE R P, REVILL C R, et al. Icebreaker performance prediction[J]. Transactions-Society of Naval Architects and Marine Engineers, 1991, 99: 221-248.
[22] ZHANG M, GARME K, BURMAN M, et al. A numerical ice load prediction model based on ice-hull collision mechanism[J]. Applied Sciences, 2020, 10: 692-713.
[23] CHO S R, LEE S. A prediction method of ice breaking resistance using a multiple regression analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 708-719.
[24] YUM J G, KANG K J, JANG J H, et al. A Study on the Hull form design and ice resistance & propulsion performance of a platform support vessel (PSV) operated in the Arctic Ocean[J]. Journal of the Society of Naval Architects of Korea, 2018, 55: 497-504.
[25] JEONG S Y, CHOI K. A review on ice resistance prediction formula for icebreaking vessels[C]// Proceedings of the International Offshore and Polar Engineering Conference. Osaka, Japan: ISOPE, 2009: 513-522.
[26] JEONG S Y, JANG J, KIM C H, et al. A study of ship resistance characteristics for ice-strengthened vessel by broken ice channel width and size of broken ice pieces[J]. Journal of the Society of Naval Architects of Korea, 2018, 55: 22-27.
[27] SONG Y Y, KIM M C, CHUN H H. A study on resistance test of icebreaker with synthetic ice[J]. Journal of the Society of Naval Architects of Korea, 2007, 44: 389-397.
[28] ZHOU L, DIAO F, SONG M, et al. Calculation methods of icebreaking capability for a double-acting polar ship[J]. Journal of Marine Science and Engineering, 2020, 8(3): 179-200.
[29] KIM M C, LEE W J, SHIN Y J. Comparative study on the resistance performance of an icebreaking cargo vessel according to the variation of waterline angles in pack ice conditions[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6: 876-893.
[30] CHO S R, JEONG S Y, LEE S. Development of effective model test in pack ice conditions of square-type ice model basin[J]. Ocean Engineering, 2013, 67: 35-44.
[31] HU J, ZHOU L. Experimental and numerical study on ice resistance for icebreaking vessels[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 626-639.
[32] JEONG S. Ice resistance prediction method based on icebreaking pattern and ice-hull contact conditions[D]. Republic of Korea: Korea Maritime and Ocean University, 2016.
[33] KIM M C, LEE S K, LEE W J, et al. Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5: 116-131.
[34] HUANG Y, HUANG S, SUN J. Experiments on navigating resistance of an icebreaker in snow covered level ice[J]. Cold Regions Science and Technology, 2018, 152: 1-14.
[35] CHAKRABARTI S K. Offshore structure modeling[M]. Chicago, USA: World Scientific, 1994.
[36] SCHWARZ J. Some latest developments in icebreaker technology[J]. Journal of Energy Resources Technology, 1986, 108: 161-167.
[37] BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]. Berlin & Heidelberg, Germany: Springer-Verlag, 2009.
[38] RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. (2016-09-15) [2022-08-18]. https://doi.org/10.48550/arXiv.1609.04747.
[39] 于晨芳, 吕烈彪, 柳卫东. 破冰船冰阻力估算方法研究[J]. 船舶标准化工程师, 2018, 51(4): 74-81.
  YU Chenfang, LV Liebiao, LIU Weidong. Research on ice resistance estimation method for icebreakers[J]. Ship Standardization Engineer, 2018, 51(4): 74-81.
[40] RISKA K, LEIVISK? T, NYMAN T, et al. Ice performance of the Swedish multi-purpose icebreaker Tor Viking II[C]// Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada: POAC, 2001: 849-866.
文章导航

/