船舶海洋与建筑工程

海洋结构物波浪砰击的数值研究综述

  • 张念凡 ,
  • 肖龙飞 ,
  • 陈刚
展开
  • 1.上海交通大学 海洋工程国家重点实验室,上海 200240
    2.上海交通大学 三亚崖州湾深海科技研究院,海南 三亚 572024
    3.中国船舶集团有限公司 中国船舶及海洋工程设计研究院,上海 200011
张念凡(1998-),博士生,从事海洋结构物波浪砰击研究.

收稿日期: 2022-12-07

  修回日期: 2023-01-14

  录用日期: 2023-02-10

  网络出版日期: 2024-03-04

基金资助

国家自然科学基金(52031006);三亚崖州湾科技城(SKJC-2021-01-003)

A Review of Numerical Studies of Wave Impacts on Marine Structures

  • ZHANG Nianfan ,
  • XIAO Longfei ,
  • CHEN Gang
Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya 572024, Hainan, China
    3. Marine Design and Research Institute of China, China State Shipbuilding Co., Ltd., Shanghai 200011, China

Received date: 2022-12-07

  Revised date: 2023-01-14

  Accepted date: 2023-02-10

  Online published: 2024-03-04

摘要

波浪砰击是发生在波浪与结构物之间的一种强非线性相互作用,其载荷通常具有峰值大、作用时间短的特点.近年来,海上极端环境导致海洋结构物经常遭受严重的波浪砰击,造成生命和财产损失,从而使得波浪砰击问题备受重视.对于复杂的砰击过程,理论分析和模型实验仅能给出砰击载荷的简化解析解及有限的砰击流场信息,数值模拟逐渐成为研究波浪砰击问题的有效手段.目前,国内外学者已经对海洋结构物的波浪砰击载荷特性、砰击作用过程及其影响因素等问题开展了大量的数值研究,并获得了许多重要的研究结论.针对海洋结构物波浪砰击的数值研究进展、现有方法及重要结论进行综述,为波浪砰击数值模拟的进一步研究提供有益参考.

本文引用格式

张念凡 , 肖龙飞 , 陈刚 . 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024 , 58(2) : 127 -140 . DOI: 10.16183/j.cnki.jsjtu.2022.500

Abstract

Wave impact is a strongly nonlinear interaction between waves and structures, and its load usually has the characteristics of a large peak value and short duration. In recent years, the extreme environment has frequently led to severe wave impacts on marine structures, resulting in loss of life and property, thus making the issue of wave impact become a great concern. For the complicated impact process, the theoretical analysis and model experiments can only provide simplified analytical solution and limited information on the slamming flow field. Therefore, numerical simulation has gradually become an effective means to study the issue of wave impact. Scholars at home and abroad have conducted a large number of numerical investigations on the load characteristics of wave impact, impact process, and its influencing factors on marine structures, gaining numerous important research conclusions. In this paper, the current progress, existing methods, and important conclusions of the numerical study of wave impact on marine structures are reviewed, which can provide useful references for further research on the numerical simulation of wave impact.

参考文献

[1] VON KáRMáN T. The impact on seaplane floats during landing[R]. Washington D.C. USA: National Advisory Committee for Aeronautics, 1929.
[2] KAPSENBERG G K. Slamming of ships: Where are we now?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1947): 2892-2919.
[3] IBRAHIM R A. Assessment of breaking waves and liquid sloshing impact[J]. Nonlinear Dynamics, 2020, 100(3): 1837-1925.
[4] BUCHNER B. The impact of green water on FPSO design[C]// Offshore Technology Conference. Houston, Texas, USA: OTC, 1995: 45-57.
[5] HENRY A, SCHMITT P, WHITTAKER T, et al. The characteristics of wave impacts on an oscillating wave surge converter[C]// The Twenty-third International Offshore and Polar Engineering Conference. Anchorage, Alaska, USA: ISOPE, 2013: 566-573.
[6] CUOMO G, ALLSOP W, BRUCE T, et al. Breaking wave loads at vertical seawalls and breakwaters[J]. Coastal Engineering, 2010, 57(4): 424-439.
[7] HAYATDAVOODI M, CENGIZ ERTEKIN R. Review of wave loads on coastal bridge decks[J]. Applied Mechanics Reviews, 2016, 68(3): 1-16.
[8] BAARHOLM R, FALTINSEN O M, HERFJORD K. Wave impact on decks of floating platforms[C]// Proceedings of the Eighth International Symposium on Practical Design of Ships and Other Floating Structures. Shanghai, China: Elsevier Science Ltd., 2001: 621-627.
[9] CHELLA M A, T?RUM A, MYRHAUG D. An overview of wave impact forces on offshore wind turbine substructures[J]. Energy Procedia, 2012, 20: 217-226.
[10] KAISER M J, YU Y, JABLONOWSKI C J. Modeling lost production from destroyed platforms in the 2004—2005 Gulf of Mexico hurricane seasons[J]. Energy, 2009, 34(9): 1156-1171.
[11] ZHANG N, XIAO L, GUO Y, et al. Parametric study of wave impact pressure impulse and characteristic pressure on a square column with overhanging deck[J]. Ocean Engineering, 2022, 258: 111722.
[12] ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87: 50-63.
[13] WAGNER H. über sto?-und gleitvorg?nge an der oberfl?che von flüssigkeiten[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
[14] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612.
[15] ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D.C., USA: National Academy Press, 1996: 408-423.
[16] WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
[17] SWIDAN A, AMIN W, RANMUTHUGALA D, et al. Numerical prediction of symmetric water impact loads on wedge shaped hull form using CFD[J]. World Journal of Mechanics, 2013, 3(8): 311-318.
[18] YU P, ZHANG B, YANG Z, et al. Numerical investigation on the shallow water entry of wedges[J]. IEEE Access, 2019, 7: 170062-170076.
[19] WANG S, SOARES C G. Numerical study on the water impact of 3D bodies by an explicit finite element method[J]. Ocean Engineering, 2014, 78: 73-88.
[20] FACCI A L, PANCIROLI R, UBERTINI S, et al. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets[J]. Journal of Fluids and Structures, 2015, 55: 484-500.
[21] FACCI A L, PORFIRI M, UBERTINI S. Three-dimensional water entry of a solid body: A computational study[J]. Journal of Fluids and Structures, 2016, 66: 36-53.
[22] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.
[23] ZHANG G, HU T, SUN Z, et al. A δSPH-SPIM coupled method for fluid-structure interaction problems[J]. Journal of Fluids and Structures, 2021, 101: 1-22.
[24] ZHANG Y, TANG Z, WAN D. Simulation of water entry of a free-falling wedge by improved MPS method[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 220-227.
[25] ZHANG K, SUN Y J, SUN Z G, et al. An efficient MPS refined technique with adaptive variable-size particles[J]. Engineering Analysis with Boundary Elements, 2022, 143: 663-676.
[26] GU H B, QIAN L, CAUSON D M, et al. Numerical simulation of water impact of solid bodies with vertical and oblique entries[J]. Ocean Engineering, 2014, 75: 128-137.
[27] KRASTEV V K, FACCI A L, UBERTINI S. Asymmetric water impact of a two dimensional wedge: A systematic numerical study with transition to ventilating flow conditions[J]. Ocean Engineering, 2018, 147: 386-398.
[28] HU Z, ZHAO X, LI M, et al. A numerical study of water entry of asymmetric wedges using a CIP-based model[J]. Ocean Engineering, 2018, 148: 1-16.
[29] BILANDI R N, JAMEI S, ROSHAN F, et al. Numerical simulation of vertical water impact of asymmetric wedges by using a finite volume method combined with a volume-of-fluid technique[J]. Ocean Engineering, 2018, 160: 119-131.
[30] SHEN Z, WAN D. Numerical simulation of sphere water entry problem based on VOF and dynamic mesh methods[C]// The Twenty-first International Offshore and Polar Engineering Conference. Maui, Hawaii, USA: ISOPE, 2011: 695-702.
[31] ZHANG Y, ZOU Q, GREAVES D, et al. A level set immersed boundary method for water entry and exit[J]. Communications in Computational Physics, 2010, 8(2): 265-288.
[32] CHENG R Y K. The interaction between a solid body and viscous fluid by marker-and-cell method[R]. Virginia, USA: Old Dominion University, 1976.
[33] BAARHOLM R, FALTINSEN O M. Wave impact underneath horizontal decks[J]. Journal of Marine Science and Technology, 2004, 9(1): 1-13.
[34] IWANOWSKI B, GRIGORIAN H, SCHERF I. Subsidence of the Ekofisk platforms: Wave in deck impact study—Various wave models and computational methods[C]// International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway: ASME, 2002: 95-102.
[35] REN B, WANG Y. Numerical simulation of random wave slamming on structures in the splash zone[J]. Ocean Engineering, 2004, 31(5-6): 547-560.
[36] QIN H, TANG W, XUE H, et al. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space[J]. Applied Ocean Research, 2017, 64: 155-168.
[37] COOKER M J, PEREGRINE D H. Violent water motion at breaking-wave impact[J]. Coastal Engineering Proceedings, 1990 (22): 164-176.
[38] ZHANG S, YUE D K P, TANIZAWA K. Simulation of plunging wave impact on a vertical wall[J]. Journal of Fluid Mechanics, 1996, 327: 221-254.
[39] XIE Z, LU L, STOESSER T, et al. Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(5): 800-804.
[40] CHEN H C. Time-domain simulation of nonlinear wave impact loads on fixed offshore platform and decks[J]. International Journal of Offshore and Polar Engineering, 2010, 20(4): 275-283.
[41] LU X, KUMAR P, BAHUGUNI A, et al. A CFD study of focused extreme wave impact on decks of offshore structures[C]// International Conference on Offshore Mechanics and Arctic Engineering. San Francisco, California, USA: ASME, 2014: 1-10.
[42] JOSE J, CHOI S J, LEE K H, et al. Breaking wave forces on an offshore wind turbine foundation (jacket type) in the shallow water[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 164-172.
[43] WEI Z, DALRYMPLE R A. Numerical study on mitigating tsunami force on bridges by an SPH model[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 365-380.
[44] 邓燕飞, 杨建民, 肖龙飞, 等. 极端波浪与海洋结构物的强非线性作用研究综述[J]. 船舶力学, 2016, 20(7): 917-928.
  DENG Yanfei, YANG Jianmin, XIAO Longfei, et al. A review on the nonlinear interactions between extreme waves and marine structures[J]. Journal of Ship Mechanics, 2016, 20(7): 917-928.
[45] LIANG X, YANG J, XIAO L, et al. Numerical study of air gap response and wave impact load on a moored semi-submersible platform in predetermined irregular wave train[C]// International Conference on Offshore Mechanics and Arctic Engineering. Shanghai, China: ASME, 2010: 515-524.
[46] KIM J S, YOO S O, KIM H J, et al. Experimental and numerical study of horizontal wave impact loads for a semi-submersible drilling unit[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-12.
[47] RIVERA-ARREBA I, BRUINSMA N, BACHYNSKI E E, et al. Modeling of a semisubmersible floating offshore wind platform in severe waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(6): 1-11.
[48] ZHOU Y, XIAO Q, LIU Y, et al. Investigation of focused wave impact on floating platform for offshore floating wind turbine: A CFD study[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-11.
[49] RUDMAN M, CLEARY P, LEONTINI J, et al. Rogue wave impact on a semi-submersible offshore platform[C]// International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 887-894.
[50] RUDMAN M, CLEARY P W. Rogue wave impact on a tension leg platform: The effect of wave incidence angle and mooring line tension[J]. Ocean Engineering, 2013, 61: 123-138.
[51] RUDMAN M, CLEARY P W. The influence of mooring system in rogue wave impact on an offshore platform[J]. Ocean Engineering, 2016, 115: 168-181.
[52] PAN K, IJZERMANS R H A, JONES B D, et al. Application of the SPH method to solitary wave impact on an offshore platform[J]. Computational Particle Mechanics, 2016, 3(2): 155-166.
[53] 赵艳. 强非线性波与海洋浮式结构物的相互作用[D]. 镇江: 江苏科技大学, 2014.
  ZHAO Yan. Simulation of strongly nonlinear wave and its interaction with floating structure[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
[54] 赵峰, 吴乘胜, 张志荣, 等. 实现数值水池的关键技术初步分析[J]. 船舶力学, 2015, 19(10): 1209-1220.
  ZHAO Feng, WU Chengsheng, ZHANG Zhirong, et al. Preliminary analysis of key issues in the development of numerical tank[J]. Journal of Ship Mechanics, 2015, 19(10): 1209-1220.
[55] KIM C H, CLEMENT A H, TANIZAWA K. Recent research and development of numerical wave tanks—A review[J]. International Journal of Offshore and Polar Engineering, 1999, 9(4): 241-256.
[56] TANIZAWA K. The state of the art on numerical wave tank[C]// Proceedings of 4th Osaka Colloquium on Seakeeping Performance of Ships. Osaka, Japan: Osaka Prefecture University, 2000: 95-114.
[57] CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure’s vibration on breaking wave impact[J]. Ocean Engineering, 2015, 96: 8-20.
[58] KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location[J]. Ocean Engineering, 2016, 128: 105-115.
[59] JACOBSEN N G, FUHRMAN D R, FREDS?E J. A wave generation toolbox for the open-source CFD library: OpenFoam?[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088.
[60] BIHS H, KAMATH A, CHELLA M A, et al. A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics[J]. Computers & Fluids, 2016, 140: 191-208.
[61] WANG X, ZHOU J F, WANG Z, et al. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms[J]. Ocean Engineering, 2018, 150: 298-308.
[62] DING W, AI C, JIN S, et al. 3D numerical investigation of forces and flow field around the semi-submersible platform in an internal solitary wave[J]. Water, 2020, 12(1): 1-21.
[63] LI Y, LIN M. Regular and irregular wave impacts on floating body[J]. Ocean Engineering, 2012, 42: 93-101.
[64] MARTíNEZ-FERRER P J, QIAN L, MA Z, et al. Improved numerical wave generation for modelling ocean and coastal engineering problems[J]. Ocean Engineering, 2018, 152: 257-272.
[65] SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Lagrangian simulations of ship-wave interactions in rough seas[J]. Ocean Engineering, 2012, 42: 13-25.
文章导航

/